Ammonia oxidizing bacteria (AOB) are major contributors to the emission of nitrous oxide (N 2 O). It has been proposed that N 2 O is produced by reduction of NO. Here, we report that the enzyme cytochrome (cyt) P460 from the AOB Nitrosomonas europaea converts hydroxylamine (NH 2 OH) quantitatively to N 2 O under anaerobic conditions. Previous literature reported that this enzyme oxidizes NH 2 OH to nitrite (NO − 2 ) under aerobic conditions. Although we observe NO − 2 formation under aerobic conditions, its concentration is not stoichiometric with the NH 2 OH concentration. By contrast, under anaerobic conditions, the enzyme uses 4 oxidizing equivalents (eq) to convert 2 eq of NH 2 OH to N 2 O. Enzyme kinetics coupled to UV/visible absorption and electron paramagnetic resonance (EPR) spectroscopies support a mechanism in which an Fe III -NH 2 OH adduct of cyt P460 is oxidized to an {FeNO} 6 unit. This species subsequently undergoes nucleophilic attack by a second equivalent of NH 2 OH, forming the N-N bond of N 2 O during a bimolecular, rate-determining step. We propose that NO − 2 results when nitric oxide (NO) dissociates from the {FeNO} 6 intermediate and reacts with dioxygen. Thus, NO − 2 is not a direct product of cyt P460 activity. We hypothesize that the cyt P460 oxidation of NH 2 OH contributes to NO and N 2 O emissions from nitrifying microorganisms. possesses a global warming potential nearly 300-fold greater than carbon dioxide (1). Atmospheric N 2 O concentrations have increased ∼120% since the preindustrial era, largely due to the widespread use of fertilizers required to produce sustenance for humans and livestock. N 2 O is a byproduct of the microbial metabolism of fertilizer components, including ammonia (NH 3 ) and nitrate (NO − 3 ); consequently, agricultural soils account for an estimated 60-75% of global N 2 O emissions. The metabolic pathway by which microorganisms oxidize NH 3 , nitrification, occurs in two phases, both of which are mediated by autotrophic microorganisms. In the first, NH 3 -oxidizing bacteria (AOB) or archaea (AOA) oxidize NH 3 to nitrite (NO − 2 ). In the second, NO − 2 is subsequently oxidized to NO − 3 by NO − 2 -oxidizing bacteria. NH 3 -oxidizing microbes contribute substantially to global N 2 O emissions, whereas NO − 2 -oxidizing bacteria produce negligible N 2 O (2, 3). AOB are proposed to emit N 2 O either as a byproduct of the nitrification pathway or as a product of the nitrifier denitrification pathway (i.e., the reduction of NO − 2 ) (4-6). Nitrification of NH 3 to NO − 2 occurs in two steps (7,8). The first step is catalyzed by NH 3 monooxygenase, which uses copper (Cu) and dioxygen (O 2 ) to hydroxylate NH 3 to hydroxylamine (NH 2 OH) (9). In AOB, the second step is thought to be the four-electron oxidation of NH 2 OH to NO − 2 by NH 2 OH oxidoreductase (HAO). HAO is a multiheme enzyme with eight c-type hemes per subunit: seven are electron transfer cofactors, and the eighth is the so-called P460 active site that contains a unique tyrosine cross-link to the ...
A vital role has been identified for the heme-lysine cross-link unique to cytochromes P460: preventing enzyme deactivation during catalysis by the obligate nitrification metabolite nitric oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.