Functional magnetic resonance imaging of brain responses to biological motion in children with autism spectrum disorder (ASD), unaffected siblings (US) of children with ASD, and typically developing (TD) children has revealed three types of neural signatures: (i) state activity, related to the state of having ASD that characterizes the nature of disruption in brain circuitry; (ii) trait activity, reflecting shared areas of dysfunction in US and children with ASD, thereby providing a promising neuroendophenotype to facilitate efforts to bridge genomic complexity and disorder heterogeneity; and (iii) compensatory activity, unique to US, suggesting a neural systemlevel mechanism by which US might compensate for an increased genetic risk for developing ASD. The distinct brain responses to biological motion exhibited by TD children and US are striking given the identical behavioral profile of these two groups. These findings offer far-reaching implications for our understanding of the neural systems underlying autism.endophenotype | functional magnetic resonance imaging
Despite the crucial role of touch in social development, there is very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. The "skin as a social organ" hypothesis is supported by the discovery of C-tactile (CT) nerves that are present in hairy skin and project to the insular cortex. CT-fibers respond specifically well to slow, gentle touch such as that which occurs during close social interactions. Given the social significance of such touch researchers have proposed that the CT-system represents an evolutionarily conserved mechanism important for normative social development. However, it is currently unknown whether brain regions other than the insula are involved in processing CT-targeted touch. In the current fMRI study, we sought to characterize the brain regions involved in the perception of CT-supported affective touch. Twenty-two healthy adults received manual brush strokes to either the arm or palm. A direct contrast of the blood-oxygenation-level-dependent (BOLD) response to gentle brushing of the arm and palm revealed the involvement of a network of brain regions, in addition to the posterior insula, during CT-targeted affective touch to the arm. This network included areas known to be involved in social perception and social cognition, including the right posterior superior temporal sulcus and the medial prefrontal cortex (mPFC)/dorso anterior cingulate cortex (dACC). Connectivity analyses with an mPFC/dACC seed revealed coactivation with the left insula and amygdala during arm touch. These findings characterize a network of brain regions beyond the insula involved in coding CT-targeted affective touch.
'Social brain' circuitry has recently been implicated in processing slow, gentle touch targeting a class of slow-conducting, unmyelinated nerves, CT afferents, which are present only in the hairy skin of mammals. Given the importance of such 'affective touch' in social relationships, the current functional magnetic resonance imaging (fMRI) study aimed to replicate the finding of 'social brain' involvement in processing CT-targeted touch and to examine the relationship between the neural response and individuals' social abilities. During an fMRI scan, 19 healthy adults received alternating blocks of slow (CT-optimal) and fast (non-optimal) brushing to the forearm. Relative to fast touch, the slow touch activated contralateral insula, superior temporal sulcus (STS), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC) and amygdala. Connectivity analyses revealed co-activation of the mPFC, insula and amygdala during slow touch. Additionally, participants' autistic traits negatively correlated with the response to slow touch in the OFC and STS. The current study replicates and extends findings of the involvement of a network of 'social brain' regions in processing CT-targeted affective touch, emphasizing the multimodal nature of this system. Variability in the brain response to such touch illustrates a tight coupling of social behavior and social brain function in typical adults.
C-tactile (CT) afferents encode caress-like touch that supports social-emotional development, and stimulation of the CT system engages the insula and cortical circuitry involved in social-emotional processing. Very few neuroimaging studies have investigated the neural mechanisms of touch processing in people with autism spectrum disorder (ASD), who often exhibit atypical responses to touch. Using functional magnetic resonance imaging, we evaluated the hypothesis that children and adolescents with ASD would exhibit atypical brain responses to CT-targeted touch. Children and adolescents with ASD, relative to typically developing (TD) participants, exhibited reduced activity in response to CT-targeted (arm) versus non-CT-targeted (palm) touch in a network of brain regions known to be involved in social-emotional information processing including bilateral insula and insular operculum, the right posterior superior temporal sulcus, bilateral temporoparietal junction extending into the inferior parietal lobule, right fusiform gyrus, right amygdala, and bilateral ventrolateral prefrontal cortex including the inferior frontal and precentral gyri, suggesting atypical social brain hypoactivation. Individuals with ASD (vs. TD) showed an enhanced response to non-CT-targeted versus CT-targeted touch in the primary somatosensory cortex, suggesting atypical sensory cortical hyper-reactivity.
Pivotal response treatment (PRT) is an empirically validated behavioral treatment that has widespread positive effects on communication, behavior, and social skills in young children with autism spectrum disorder (ASD). For the first time, functional magnetic resonance imaging was used to identify the neural correlates of successful response to PRT in two young children with ASD. Baseline measures of social communication, adaptive behavior, eye tracking and neural response to social stimuli were taken prior to treatment and after 4 months of PRT. Both children showed striking gains on behavioral measures and also showed increased activation to social stimuli in brain regions utilized by typically developing children. These results suggest that neural systems supporting social perception are malleable through implementation of PRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.