Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.
A fast, simple and sensitive electrochemical method for sensing peroxide-based explosives based on their acid treatment is reported. The method relies on the high electrocatalytic activity of Prussian-blue (PB)-modified electrodes towards the acid-generated hydrogen peroxide in the harsh acidic medium (down to pH 0.3) used for releasing hydrogen peroxide. Such effective operation of PB electrochemical sensors in strongly acidic media eliminates the need for an additional neutralization step required in analogous peroxidase-based assays (due to acid-induced enzyme deactivation processes). Factors affecting the efficiency of the acid pre-treatment of triacetone triperoxide (TATP) have been examined and optimized to allow its sensitive measurement down to the 50 ng level within 60 s. Chronoamperometric detection of microgram amounts of solid TATP, following a one-minute acid mixing and placing a 20 microL droplet onto a disposable PB-modified screen-printed electrode is illustrated. Similar results were obtained for the peroxide explosive hexamethylene triperoxide diamine (HMTD). By greatly simplifying the analytical procedure, such an acid-operated "artificial peroxidase" electrocatalytic transducer holds great promise for designing "one-step", user-friendly, miniaturized, cost-effective devices for field screening of peroxide explosives.
A highly sensitive electrochemical assay of the peroxide-based explosives triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) at a Prussian-blue (PB) modified electrode is reported. The method involves photochemical degradation of the peroxide explosives and a low potential (0.0 V) electrocatalytic amperometric sensing of the generated hydrogen peroxide at the PB transducer and offers nanomolar detection limits following a short (15 s) irradiation times. The electrochemical sensing protocol should facilitate rapid field screening of peroxide explosives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.