Dentists must be skilled when using dental mirrors. Working with mirrors requires spatial perception, bimanual coordination, perceptual learning and fine motor skills. Many studies have attempted to determine the predictors of manual skills among pre-clinical students, but consensus has yet to be reached. We hypothesized that valid and reliable occupational therapy test performance regarding indirect vision would differ between dental students and junior dentists and would explain the variance in manual skill performance in pre-clinical courses. To test this hypothesis, we applied the Purdue Pegboard test and O’Connor Tweezer Dexterity test under different conditions of direct and indirect vision. We administered these tests to students in phantom-head academic courses in 2015 and 2016 and to junior dentists. Students performed the tests at three time points: before phantom training (T0), at the end of the training (T1) and in the middle of the following year of study (T2). Dentists performed the same tests twice at 1st and 2nd trials one week apart. The results showed that indirect tasks were significantly more difficult to perform for both groups. These dexterity tests were sensitive enough to detect students’ improvement after phantom training. The dentists’ performances were significantly better than those of students at T0, specifically with regard to the use of tweezers under direct and indirect vision (the O’Connor test). A regression analysis showed that students’ manual grades obtained at the beginning of the phantom course, their performance on the Purdue test using both hands, and their performance on the O’Connor test under indirect vision predicted phantom course success in 80% of cases. The O’Connor test under indirect vision is the most informative means of monitoring and predicting the manual skills required in the pre-clinical year of dentistry studies.
Denture stomatitis is a common manifestation of oral candidiasis affecting some 65% of denture wearers. This condition is initiated by the adherence of Candida albicans to denture base acrylic resin. The present study aimed to test the in vitro effect of traditional and novel fabrication methods on Candida albicans adhesion to denture base samples. Denture based acrylic discs were fabricated using: (i) computerized milling, (ii) 3D printing, (iii) heat curing, and (iv) cold curing. Discs were tested for surface roughness (Ra), hydrophobicity (contact angle), mucin adsorption (Bradford assay), and Candida albicans adhesion. 3D printing significantly increased microbial cell adhesion as compared with heat curing, and computerized milling significantly decreased it. These results were associated with mucin adsorption levels rather than surface roughness. Results suggest that 3D printing may increase the risk for developing denture stomatitis, whereas computerized milling may decrease it as compared with traditional heat curing denture base fabrication.
Background Marginal fit is critical for the success and longevity of a dental restoration. Zirconia crowns can be fabricated either chair-side, in a dental laboratory or in a milling center; each can give different marginal fits results. However, discussion of the marginal fit of zirconia crowns when different fabrication methods are compared is lacking in the literature. Purpose To compare the marginal discrepancy (MD) and absolute marginal discrepancy (AMD) of computer-aided design, and computer-aided manufacturing (CAD-CAM) used in a dental laboratory and a milling center for producing monolithic zirconia crowns. Methods The marginal fit of 30 zirconia crowns cemented to typodont teeth was evaluated by means of a sectioning technique. Fifteen crowns were fabricated with a CEREC inLAB MC X5 from IPS e.max ZirCAD blocks. Fifteen crowns were fabricated using a LAVA milling center from LAVA Plus Zirconia Blocks. The 30 crowns were sectioned with a precision saw, and MD and AMD were subsequently measured using a light microscope. Data were analyzed using the one-way ANOVA technique to investigate significant differences in the marginal fit between the two fabrication systems (α = .05). Results The AMD dimension of the CEREC inLAB system was significantly smaller ( P < .05). Mean AMD values for zirconia crowns fabricated by the CEREC inLAB were 85 μm, and for the LAVA milling center 133 μm. There was no significant difference between the two systems regarding the MD dimensions. The MD values for zirconia crowns fabricated by the CEREC inLAB were 53 μm and for the LAVA milling center 61 μm. Conclusions The CEREC inLAB system demonstrated significantly better marginal fit in relation to the AMD. However, no difference between the systems was found in the MD. Monolithic zirconia crowns fabricated by the CAD-CAM CEREC inLAB system and the LAVA system milling center showed MD values of less than 120 μm, which is within the clinically acceptable range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.