The prevalence of e-learning systems and on-line courses has made educational material widely accessible to students of varying abilities and backgrounds. There is thus a growing need to accommodate for individual differences in e-learning systems. This paper presents an algorithm called Edu-Rank for personalizing educational content to students that combines a collaborative filtering algorithm with voting methods. EduRank constructs a difficulty ranking for each student by aggregating the rankings of similar students using different aspects of their performance on common questions. These aspects include grades, number of retries, and time spent solving questions. It infers a difficulty ranking directly over the questions for each student, rather than ordering them according to the student's predicted score. The EduRank algorithm was tested on two data sets containing thousands of students and a million records. It was able to outperform the state-ofthe-art ranking approaches as well as a domain expert. EduRank was used by students in a classroom activity, where a prior model was incorporated to predict the difficulty rankings of students with no prior history in the system. It was shown to lead students to solve more difficult questions than an ordering by a domain expert, without reducing their performance.
As e-learning systems become more prevalent, there is a growing need for them to accommodate individual differences between students. This paper addresses the problem of how to personalize educational content to students in order to maximize their learning gains over time. We present a new computational approach to this problem called MAPLE (Multi-Armed Bandits based Personalization for Learning Environments) that combines difficulty ranking with multiarmed bandits. Given a set of target questions MAPLE estimates the expected learning gains for each question and uses an exploration-exploitation strategy to choose the next question to pose to the student. It maintains a personalized ranking over the difficulties of question in the target set which is used in two ways: First, to obtain initial estimates over the learning gains for the set of questions. Second, to update the estimates over time based on the students responses. We show in simulations that MAPLE was able to improve students' learning gains compared to approaches that sequence questions in increasing level of difficulty, or rely on content experts. When implemented in a live e-learning system in the wild, MAPLE showed promising results. This work demonstrates the efficacy of using stochastic approaches to the sequencing problem when augmented with information about question difficulty.
Despite the prevalence of e-learning systems in schools, most of today's systems do not personalize educational data to the individual needs of each student. This paper proposes a new algorithm for sequencing questions to students that is empirically shown to lead to better performance and engagement in real schools when compared to a baseline approach. It is based on using knowledge tracing to model students' skill acquisition over time, and to select questions that advance the student's learning within the range of the student's capabilities, as determined by the model. The algorithm is based on a Bayesian Knowledge Tracing (BKT) model that incorporates partial credit scores, reasoning about multiple attempts to solve problems, and integrating item difficulty. This model is shown to outperform other BKT models that do not reason about (or reason about some but not all) of these features. The model was incorporated into a sequencing algorithm and deployed in two classes in different schools where it was compared to a baseline sequencing algorithm that was designed by pedagogical experts. In both classes, students using the BKT sequencing approach solved more difficult questions and attributed higher performance than did students who used the expert-based approach. Students were also more engaged using the BKT approach, as determined by their interaction time and number of log-ins to the system, as well as their reported opinion. We expect our approach to inform the design of better methods for sequencing and personalizing educational content to students that will meet their individual learning needs.
The majority of volunteers participating in citizen science projects perform only a few tasks each before leaving the system. We designed an intervention strategy to reduce disengagement in 16 different citizen science projects. Targeted users who had left the system received emails that directly addressed motivational factors that affect their engagement. Results show that participants receiving the emails were significantly more likely to return to productive activity when compared to a control group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.