The amount of personal information unwillingly exposed by users on online social networks is staggering, as shown in recent research. Moreover, recent reports indicate that these networks are infested with tens of millions of fake users profiles, which may jeopardize the users' security and privacy. To identify fake users in such networks and to improve users' security and privacy, we developed the Social Privacy Protector software for Facebook. This software contains three protection layers, which improve user privacy by implementing different methods. The software first identifies a user's friends who might pose a threat and then restricts this "friend's" exposure to the user's personal information. The second layer is an expansion of Facebook's basic privacy settings based on different types of social network usage profiles. The third layer alerts users about the number of installed applications on their Facebook profile, which have access to their private information. An initial version of the Social Privacy Protection software received high media coverage, and more than 3,000 users from more than twenty countries have installed the software, out of which 527 used the software to restrict more than nine thousand friends. In addition, we estimate that more than a hundred users accepted the software's recommendations and removed at least 1,792 Facebook applications from their profiles. By analyzing the unique dataset obtained by the software in combination with machine learning techniques, we developed classifiers, which are able to predict which Facebook profiles have high probabilities of being fake and therefore, threaten the user's well-being. Moreover, in this study, we present statistics on users' privacy settings and statistics of the number of applications installed on Facebook profiles. Both statistics are obtained by the Social Privacy Protector software. These statistics alarmingly demonstrate how exposed Facebook users information is to both fake profile attacks and third party Facebook applications.
Background The COVID-19 pandemic has affected populations worldwide, with extreme health, economic, social, and political implications. Health care professionals (HCPs) are at the core of pandemic response and are among the most crucial factors in maintaining coping capacities. Yet, they are also vulnerable to mental health effects caused by managing a long-lasting emergency with a lack of resources and under complicated personal concerns. However, there are a lack of longitudinal studies that investigate the HCP population. Objective The aim of this study was to analyze the state of mind of HCPs as expressed in online discussions published on Twitter in light of the COVID-19 pandemic, from the onset of the pandemic until the end of 2020. Methods The population for this study was selected from followers of a few hundred Twitter accounts of health care organizations and common HCP points of interest. We used active learning, a process that iteratively uses machine learning and manual data labeling, to select the large-scale population of Twitter accounts maintained by English-speaking HCPs, focusing on individuals rather than official organizations. We analyzed the topics and emotions in their discourses during 2020. The topic distributions were obtained using the latent Dirichlet allocation algorithm. We defined a measure of topic cohesion and described the most cohesive topics. The emotions expressed in tweets during 2020 were compared to those in 2019. Finally, the emotion intensities were cross-correlated with the pandemic waves to explore possible associations between the pandemic development and emotional response. Results We analyzed the timelines of 53,063 Twitter profiles, 90% of which were maintained by individual HCPs. Professional topics accounted for 44.5% of tweets by HCPs from January 1, 2019, to December 6, 2020. Events such as the pandemic waves, US elections, or the George Floyd case affected the HCPs’ discourse. The levels of joy and sadness exceeded their minimal and maximal values from 2019, respectively, 80% of the time (P=.001). Most interestingly, fear preceded the pandemic waves, in terms of the differences in confirmed cases, by 2 weeks with a Spearman correlation coefficient of ρ(47 pairs)=0.340 (P=.03). Conclusions Analyses of longitudinal data over the year 2020 revealed that a large fraction of HCP discourse is directly related to professional content, including the increase in the volume of discussions following the pandemic waves. The changes in emotional patterns (ie, decrease in joy and increase in sadness, fear, and disgust) during the year 2020 may indicate the utmost importance in providing emotional support for HCPs to prevent fatigue, burnout, and mental health disorders during the postpandemic period. The increase in fear 2 weeks in advance of pandemic waves indicates that HCPs are in a position, and with adequate qualifications, to anticipate pandemic development, and could serve as a bottom-up pathway for expressing morbidity and clinical situations to health agencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.