Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diverse habitats that provide stable temperatures, high humidity and decaying organic matter. We describe studies designed to identify and characterize sand fly breeding habitats in a Judean Desert focus of cutaneous leishmaniasis. To detect breeding habitats we constructed emergence traps comprising sand fly-proof netting covering defined areas or cave openings. Large size horizontal sticky traps within the confined spaces were used to trap the sand flies. Newly eclosed male sand flies were identified based on their un-rotated genitalia. Cumulative results show that Phlebotomus sergenti the vector of Leishmania tropica rests and breeds inside caves that are also home to rock hyraxes (the reservoir hosts of L. tropica) and several rodent species. Emerging sand flies were also trapped outside covered caves, probably arriving from other caves or from smaller, concealed cracks in the rocky ledges close by. Man-made support walls constructed with large boulders were also identified as breeding habitats for Ph. sergenti albeit less important than caves. Soil samples obtained from caves and burrows were rich in organic matter and salt content. In this study we developed and put into practice a generalized experimental scheme for identifying sand fly breeding habitats and for assessing the quantities of flies that emerge from them. An improved understanding of sand fly larval ecology should facilitate the implementation of effective control strategies of sand fly vectors of Leishmania.
BackgroundVisceral leishmaniasis (VL) is a neglected tropical disease, which is strongly associated with poverty. VL caused by Leishmania donovani and transmitted by Phlebotomus orientalis is endemic in various remote areas of north and north-west Ethiopia. The present study was designed to determine the sand fly fauna and bionomics of P. orientalis in the VL endemic focus of Tahtay Adiyabo district.MethodsSand flies were collected using CDC light traps (n = 602), sticky traps (n = 9,350) and indoor pyrethrum spray catches (n = 578 house visits) from indoor, peri-domestic and agricultural field habitats between May 2011 to April 2012. All sand fly specimens collected were identified to species level and counted.ResultsIn total, 100,772 sand fly specimens, belonging to 25 sand fly species (nine Phlebotomus and sixteen Sergentomyia) were collected and identified. S. africana and P. orientalis made up 59.1% and 23.5% of the collected sand flies, respectively. As it could be determined from the proportion of collections from outdoor (peri-domestic and agricultural fields) and indoor locations, P. orientalis appears to exhibit increased exophilic behavior. The outdoor to indoor index was 79:1 on m2 of sticky traps. Mean density of P. orientalis caught was significantly higher on horizontally placed sticky traps (mean = 60 ± 14.56/m2/night) than vertically deployed sticky traps (12 ± 3.57/m2/night). The highest abundance of P. orientalis occurred between March and April. Through July to September, there was a sharp decline in abundance of P. orientalis population. Regarding climatic variables, P. orientalis density in light traps and on sticky traps showed a significant positive and negative association with temperature and relative humidity, respectively. However, non-significant negative correlation was observed with rainfall pattern.ConclusionsOverall, P. orientalis was found to be the most abundant Phlebotomus species, showing marked seasonal abundance that mainly peaks during the dry season (March to April). Likewise, the people in the area usually sleep in compounds during these months that potentially expose them to a high risk of peri-domestic VL transmission.
BackgroundBlood-feeding behavior studies are important for estimating the efficiency of pathogen transmission and assessing the relative human disease risk. However, in Ethiopia and other parts of East Africa there are large remaining gaps in identifying the feeding habits of Phlebotomus orientalis, the vector of Leishmania donovani. The aim of the study was to determine the blood feeding patterns of P. orientalis in Tahtay Adiyabo district, northern Ethiopia.MethodsFor bloodmeal analysis, sandflies were collected from three different villages of Tahtay Adiyabo district using CDC light traps, sticky traps, and pyrethrum spray catches. Bloodmeal of engorged female sandflies was identified using cytochrome (cyt) b-PCR and reverse-line blotting (RLB) and enzyme linked immunosorbent assay (ELISA) assays.ResultsMost (637/641) of the females analyzed were P. orientalis. Successful identification of the host from bloodmeals was achieved in 83.03 and 92.1 % using cyt b PCR-RLB and ELISA, respectively. Bloodmeal analysis of P. orientalis females revealed that they have a range of hosts with predominant preference to bovines followed by donkey, human, goat, sheep, dog, and camel.ConclusionResults obtained from bloodmeal analyses demonstrate that the feeding preference of P. orientalis is mainly zoophilic, which could vary depending on the availability of hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.