Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.
The interactions of plants with their pollinators are thought to be a driving force in the evolution of angiosperms. Adaptation to a new pollinator involves coordinated changes in multiple floral traits controlled by multiple genes. Surprisingly, such complex genetic shifts have happened numerous times during evolution. Here we report on the genetic basis of the changes in one such trait, floral scent emission, in the genus Petunia (Solanaceae). The increase in the quantity and complexity of the volatiles during the shift from bee to hawkmoth pollination was due to de novo expression of the genes encoding benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) and benzoyl-CoA:benzylalcohol/2-phenylethanol benzoyltransferase (BPBT) together with moderately increased transcript levels for most enzymes of the phenylpropanoid/benzenoid pathway. Loss of cinnamate-CoA ligase (CNL) function as well as a reduction in the expression of the MYB transcription factor ODO1 explain the loss of scent during the transition from moth to hummingbird pollination. The CNL gene in the hummingbird-adapted species is inactive due to a stop codon, but also appears to have undergone further degradation over time. Therefore, we propose that loss of scent happened relatively early in the transition toward hummingbird pollination, and probably preceded the loss of UV-absorbing flavonols. The discovery that CNL is also involved in the loss of scent during the transition from outcrossing to selfing in Capsella (Brassicaceae) (see the accompanying paper) raises interesting questions about the possible causes of deep evolutionary conservation of the targets of evolutionary change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.