We study the effectiveness of metrics for Multi-Robot Motion-Planning (MRMP) when using RRT-style sampling-based planners. These metrics play the crucial role of determining the nearest neighbors of configurations and in that they regulate the connectivity of the underlying roadmaps produced by the planners and other properties like the quality of solution paths. After screening over a dozen different metrics we focus on the five most promising ones-two more traditional metrics, and three novel ones which we propose here, adapted from the domain of shape-matching. In addition to the novel multi-robot metrics, a central contribution of this work are tools to analyze and predict the effectiveness of metrics in the MRMP context. We identify a suite of possible substructures in the configuration space, for which it is fairly easy (i) to define a so-called natural distance, which allows us to predict the performance of a metric. This is done by comparing the distribution of its values for sampled pairs of configurations to the distribution induced by the natural distance; (ii) to define equivalence classes of configurations and test how well a metric covers the different classes. We provide experiments that attest to the ability of our tools to predict the effectiveness of metrics: those metrics that qualify in the analysis yield higher success rate of the planner with fewer vertices in the roadmap. We also show how combining several metrics together leads to better results (success rate and size of roadmap) than using a single metric.
Abstract-We study the effectiveness of metrics for MultiRobot Motion-Planning (MRMP) when using RRT-style sampling-based planners. These metrics play the crucial role of determining the nearest neighbors of configurations and in that they regulate the connectivity of the underlying roadmaps produced by the planners and other properties like the quality of solution paths. After screening over a dozen different metrics we focus on the five most promising ones-two more traditional metrics, and three novel ones which we propose here, adapted from the domain of shape-matching. In addition to the novel multi-robot metrics, a central contribution of this work are tools to analyze and predict the effectiveness of metrics in the MRMP context. We identify a suite of possible substructures in the configuration space, for which it is fairly easy (i) to define a so-called natural distance, which allows us to predict the performance of a metric. This is done by comparing the distribution of its values for sampled pairs of configurations to the distribution induced by the natural distance; (ii) to define equivalence classes of configurations and test how well a metric covers the different classes. We provide experiments that attest to the ability of our tools to predict the effectiveness of metrics: those metrics that qualify in the analysis yield higher success rate of the planner with fewer vertices in the roadmap. We also show how combining several metrics together leads to better results (success rate and size of roadmap) than using a single metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.