The protein p27 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport.
The axonal transport of vesicles promotes microtubule acetylation across species.
A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.
The splice site mutation in the IKBKAP gene coding for IKAP protein leads to the tissue-specific skipping of exon 20, with concomitant reduction in IKAP protein production. This causes the neurodevelopmental, autosomal-recessive genetic disorder - Familial Dysautonomia (FD). The molecular hallmark of FD is the severe reduction of IKAP protein in the nervous system that is believed to be the main reason for the devastating symptoms of this disease. Our recent studies showed that in the brain of two FD patients, genes linked to oligodendrocyte differentiation and/or myelin formation are significantly downregulated, implicating IKAP in the process of myelination. However, due to the scarcity of FD patient tissues, these results awaited further validation in other models. Recently, two FD mouse models that faithfully recapitulate FD were generated, with two types of mutations resulting in severely low levels of IKAP expression. Here we demonstrate that IKAP deficiency in these FD mouse models affects a similar set of genes as in FD patients' brains. In addition, we identified two new IKAP target genes involved in oligodendrocyte cells differentiation and myelination, further underscoring the essential role of IKAP in this process. We also provide proof that IKAP expression is needed cell-autonomously for the regulation of expression of genes involved in myelin formation since knockdown of IKAP in the Oli-neu oligodendrocyte precursor cell line results in similar deficiencies. Further analyses of these two experimental models will compensate for the lack of human postmortem tissues and will advance our understanding of the role of IKAP in myelination and the disease pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.