Intensive research efforts have been undertaken to slow human aging and therefore potentially delay the onset of age-related diseases. These efforts have generated an enormous amount of high-throughput data covering different levels in the physiologic hierarchy, e.g., genetic, epigenetic, transcriptomic, proteomic, and metabolomic, etc. We gathered 15 independent sources of information about genes potentially involved in human longevity and lifespan (N = 5836) and subjected them to various integrated analyses. Many of these genes were initially identified in non-human species, and we investigated their orthologs in three non-human species [i.e., mice (N = 967), fruit fly (N = 449), and worm (N = 411)] for further analysis. We characterized experimentally determined protein-protein interaction networks (PPIN) involving each species’ genes from 9 known protein databases and studied the enriched biological pathways among the individually constructed PPINs. We observed three important signaling pathways: FoxO signaling, mTOR signaling, and autophagy to be common and highly enriched in all four species (p-value ≤ 0.001). Our study implies that the interaction of proteins involved in the mechanistic target of rapamycin (mTOR) signaling pathway is somewhat limited to each species or that a “rewiring” of specific networks has taken place over time. To corroborate our findings, we repeated our analysis in 43 different human tissues. We investigated conserved modules in various tissue-specific PPINs of the longevity-associated genes based upon their protein expression. This analysis also revealed mTOR signaling as shared biological processes across four different human tissue-specific PPINs for liver, heart, skeletal muscle, and adipose tissue. Further, we explored our results’ translational potential by assessing the protein interactions with all the reported drugs and compounds that have been experimentally verified to promote longevity in the three-comparator species. We observed that the target proteins of the FDA-approved drug rapamycin (a known inhibitor of mTOR) were conserved across all four species. Drugs like melatonin and metformin exhibited shared targets with rapamycin in the human PPIN. The detailed information about the curated gene list, cross-species orthologs, PPIN, and pathways was assembled in an interactive data visualization portal using RStudio’s Shiny framework (https://agingnetwork.shinyapps.io/frontiers/).
The porphyritic granite body (~ 600 Ma) around Mylliem (25°32'N : 91°52'E), east Khasi hills district, Meghalaya occurs as a distinct intrusive body into the host rock of low-grade meta-sediments belonging to Proterozoic Shillong Group. The porphyritic granite body manifests prominent lath-shaped feldspar phenocrysts giving rise to dominant porphyritic texture. Further, this porphyritic granite body is characterized by primary foliation (defined by parallely arranged feldspar laths), tongues and appophyses and xenoliths of older metamorphics. Petrographically, the Mylliem porphyritic granite is grey leucocratic, coarse grained, phanerocrystalline with modal variants ranging from granite to granodiorite tending to tonalite. Simple statistical studies based on correlation coefficient values involving modal variables of the Mylliem porphyritic granite bodies appear significant in majority of the cases indicating magmatic crystallization. Use of relevant thermometric method indicates temperature of equilibration of the body in the range of 369°C to 507°C. The crystallization of the Mylliem porphyritic granite pluton initiated at an average lithostatic pressure in the tune of ~11 Kb followed by dominant P H 2 O controlled milieu. Spatially projected mineralogical parameters suggest a general trend of the magmatic cooling of the body from margin inward with sudden influx of volatile matters that occasionally offsets mineralogical trends.
Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a ‘Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein–protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.