Background: Microbiota from different niches within the canine oral cavity were profiled and compared. Supragingival plaque and stimulated saliva, were collected alongside samples from the buccal and tongue dorsum mucosa, from 14 Labrador retrievers at three timepoints within a 1 month timeframe. The V3-V4 region of the 16S rRNA gene was sequenced via Illumina MiSeq. Results: Supragingival plaque microbiota had the highest bacterial diversity and the largest number of significant differences in individual taxa when compared to the other oral niches. Stimulated saliva exhibited the highest variability in microbial composition between dogs, yet the lowest bacterial diversity amongst all the niches. Overall, the bacteria of the buccal and tongue dorsum mucosa were most similar. Conclusions: The bacterial community profiles indicated three discrete oral niches: soft tissue surfaces (buccal and tongue dorsum mucosa), hard tissue surface (supragingival plaque) and saliva. The ability to distinguish the niches by their microbiota signature offers the potential for microbial biomarkers to be identified in each unique niche for diagnostic use.
It is now well established that bacterial populations utilize cell-to-cell signaling (quorum-sensing, QS) to control the production of public goods and other co-operative behaviours. Evolutionary theory predicts that both the cost of signal production and the response to signals should incur fitness costs for producing cells. Although costs imposed by the downstream consequences of QS have been shown, the cost of QS signal molecule (QSSM) production and its impact on fitness has not been examined. We measured the fitness cost to cells of synthesising QSSMs by quantifying metabolite levels in the presence of QSSM synthases. We found that: (i) bacteria making certain QSSMs have a growth defect that exerts an evolutionary cost, (ii) production of QSSMs negatively correlates with intracellular concentrations of QSSM precursors, (iii) the production of heterologous QSSMs negatively impacts the production of a native QSSM that shares common substrates, and (iv) supplementation with exogenously added metabolites partially rescued growth defects imposed by QSSM synthesis. These data identify the sources of the fitness costs incurred by QSSM producer cells, and indicate that there may be metabolic trade-offs associated with QS signaling that could exert selection on how signaling evolves.
Background Oral malodour is identified by pet owners as an unpleasant inconvenience, but they may not recognise this likely indicates underlying disease. The primary cause of oral malodour relates to the presence of bacteria in the oral cavity often associated with gingivitis and periodontitis. The purpose of this study was to determine the effect of feeding two oral care chews with different textural properties on oral malodour and the proportion of bacterial species involved in the production of volatile sulphur compounds (VSCs). Methods Fourteen dogs (9 Petit Basset Griffon Vendéen (PBGV) and 5 Beagle dogs) participated in the randomised cross-over study for a total of 14 weeks. The cohort was divided into four groups with each exposed to a different intervention per week: chew A, chew B, tooth brushing control or a no intervention control. An induced malodour method was used to assess VSCs in breath samples using a portable gas chromatograph (OralChroma™). Microbiological samples (supragingival plaque and tongue coating scrapes) were analysed for VSC-producing bacteria using Oral Hydrogen Sulfide agar with lead acetate. Results VSCs were detected in the dogs’ breath samples and levels of hydrogen sulphide and methyl mercaptan were found to be reduced following an intervention. Chew B significantly reduced the levels of both hydrogen sulphide (p < 0.001) and methyl mercaptan (p < 0.05) compared to no intervention. Reductions in methyl mercaptan were also observed for chew A and tooth brushing but these were not statistically significant. When compared to no intervention, all interventions significantly reduced the total bacterial load and VSC producing bacterial load in plaque (p < 0.001). For tongue samples, only chew B significantly reduced the total bacterial load and VSC-producing bacterial load (p < 0.001) compared to no intervention. Conclusions By inducing oral malodour and subsequently applying the one-time interventions, significant reductions in the levels of VSCs were observed. The use of oral care chews texturally designed to deliver a deep, all-round cleaning action can be particularly effective at managing oral malodour in dogs, likely through an enhanced ability to remove bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.