Frequent episode discovery is a popular framework for temporal pattern discovery in event streams. An episode is a partially ordered set of nodes with each node associated with an event type. Currently algorithms exist for episode discovery only when the associated partial order is total order (serial episode) or trivial (parallel episode). In this paper, we propose efficient algorithms for discovering frequent episodes with unrestricted partial orders when the associated event-types are unique. These algorithms can be easily specialized to discover only serial or parallel episodes. Also, the algorithms are flexible enough to be specialized for mining in the space of certain interesting subclasses of partial orders. We point out that frequency alone is not a sufficient measure of interestingness in the context of partial order mining. We propose a new interestingness measure for episodes with unrestricted partial orders which, when used along with frequency, results in an efficient scheme of data mining. Simulations are presented to demonstrate the effectiveness of our algorithms.
Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.
Genomic studies have greatly expanded our knowledge of structural non-coding RNAs (ncRNAs). These RNAs fold into characteristic secondary structures and perform specific-structure dependent biological functions. Hence RNA secondary structure prediction is one of the most well studied problems in computational RNA biology. Comparative sequence analysis is one of the more reliable RNA structure prediction approaches as it exploits information of multiple related sequences to infer the consensus secondary structure. This class of methods essentially learns a global secondary structure from the input sequences. In this paper, we consider the more general problem of unearthing common local secondary structure based patterns from a set of related sequences. The input sequences for example could correspond to 3′ or 5′ untranslated regions of a set of orthologous genes and the unearthed local patterns could correspond to regulatory motifs found in these regions. These sequences could also correspond to in vitro selected RNA, genomic segments housing ncRNA genes from the same family and so on. Here, we give a detailed review of the various computational techniques proposed in literature attempting to solve this general motif discovery problem. We also give empirical comparisons of some of the current state of the art methods and point out future directions of research.ReviewersThis article was reviewed by Dr. Erez Levanon, Dr. Sebastian Maurer-Stroh and Dr. Weixiong Zhang.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.