By collecting longitudinal learner and learning data from a range of resources, predictive learning analytics (PLA) are used to identify learners who may not complete a course, typically described as being at risk. Mixed effects are observed as to how teachers perceive, use, and interpret PLA data, necessitating further research in this direction. The aim of this study is to evaluate whether providing teachers in a distance learning higher education institution with PLA data predicts students' performance and empowers teachers to identify and assist students at risk. Using principles of Technology Acceptance and Academic Resistance models, a university-wide, multi-methods study with 59 teachers, nine courses, and 1325 students revealed that teachers can positively affect students' performance when engaged with PLA. Follow-up semi-structured interviews illuminated teachers' actual uses of the predictive data and revealed its impact on teaching practices and intervention strategies to support students at risk.
A vast number of studies, yet mostly small-scale reported exciting innovations and practices in the field of learning analytics. Whilst these studies provide substantial insights, there are still relatively few studies that have explored how the stakeholders' (i.e., teachers, students, researchers, management) perspectives and involvement influence largescale and institutional-wide adaptation of learning analytics. This study reports on one such large-scale and long-term implementation of Predictive Learning Analytics (PLA) spanning a period of four years at a distance learning university. OU Analyse (OUA) is the PLA system used in this study, providing predictive insights to teachers about students and their chance of passing a course. Over the last four years, OUA has been accessed by 1,182 unique teachers and reached 23,640 students in 231 undergraduate online courses. The aim of this study is twofold: (a) to reflect on the macro-level of adoption by detailing usage, challenges and factors facilitating adoption at the organisational level, and (b) to detail the micro-level of adoption, that is the teachers' perspectives about OUA. Amongst the factors critical to the scalable PLA implementation were: the faculty's engagement with OUA, teachers as "champions", evidence generation and dissemination, digital literacy, and conceptions about teaching online.
This study presents an advanced predictive learning analytics system, OU Analyse (OUA), and evidence from its evaluation with online teachers at a distance learning university. OUA is a predictive system that uses machine learning methods for the early identification of students at risk of not submitting (or failing) their next assignment. Teachers have access, via interactive dashboards, to weekly predictions of risk of failing for each of their students. In this study, we examined how the degree of OUA usage by 559 teachers, of which 189 were given access to OUA, related to student learning outcomes of more than 14 000 students in 15 undergraduate courses. Teachers who made “average” use of OUA, that is accessed OUA throughout the life cycle of a course presentation, and in particular between 10% and 40% of the weeks a course was running, and intervened with students flagged as at risk were found to benefit their students the most; after controlling for differences in academic performance, these students were found to have significantly better performance than their peers in the previous year's course presentation during which the same teachers made no use of predictive learning analytics. Predictive learning analytics is an innovative student's support approach in online pedagogy that, as shown in this study, can empower online teachers in effectively monitoring and intervening with their students, over and above other approaches, and result in improved learning outcomes. What is already known about this topic Pedagogical and personal support to students is a significant responsibility of online teachers. Student's support is a challenging activity due to the lack of face‐to‐face interactions. Predictive learning analytics (PLA) can identify students at risk of failing their studies. What this paper adds One of the few large‐scale studies is available for examining the impact of analytics on student's performance. Teachers' usage of PLA was significantly related to better learning outcomes. Online teachers had students with better learning outcomes when accessing PLA data rather than when they had no access. Implications for practice and/or policy PLA can empower online teachers and complement the teaching practice. PLA can help in the identification and proactive intervention of students at risk of failing their studies. Actions should be taken to motivate and engage online teachers with PLA.
Predictive Learning Analytics (PLA) aim to improve learning by identifying students at risk of failing their studies. Yet, little is known about how best to integrate and scaffold PLA initiatives into higher education institutions. Towards this end, it becomes essential to capture and analyze the perceptions of relevant educational stakeholders (i.e., managers, teachers, students) about PLA. This paper presents an “at scale” implementation of PLA at a distance learning higher education institution and details, in particular, the perspectives of 20 educational managers involved in the implementation. It concludes with a set of recommendations about how best to adopt and apply large-scale PLA initiatives in higher education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.