Research utilizing magnetic resonance imaging (MRI) has been crucial to the understanding of the neuropathological mechanisms behind and clinical identification of Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI modalities show patterns of brain damage that discriminate AD from other brain illnesses and brain abnormalities that are associated with risk of conversion to AD from MCI and other behavioural outcomes. This review discusses the application of various MRI techniques to and their clinical usefulness in AD and MCI. MRI modalities covered include structural MRI, diffusion tensor imaging (DTI), arterial spin labelling (ASL), magnetic resonance spectroscopy (MRS), and functional MRI (fMRI). There is much evidence supporting the validity of MRI as a biomarker for these disorders; however, only traditional structural imaging is currently recommended for routine use in clinical settings. Future research is needed to warrant the inclusion for more advanced MRI methodology in forthcoming revisions to diagnostic criteria for AD and MCI.
In this retrospective, pilot, observational longitudinal study, the presence of LM CE was associated with progression of cortical atrophy over 5 years.
Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease for which there is no cure. Mild cognitive impairment (MCI) is considered a prodromal stage of the disease. Molecular imaging with positron emission tomography (PET) allows for the in vivo visualisation and tracking of pathophysiological changes in AD and MCI. PET is a very promising methodology for differential diagnosis and novel targets of PET imaging might also serve as biomarkers for disease‐modifying therapeutic interventions. This review provides an overview of the current status and applications of in vivo molecular imaging of AD pathology, specifically amyloid, tau, and microglial activation. PET imaging studies were included and evaluated as potential biomarkers and for monitoring disease progression. Although the majority of radiotracers showed the ability to discriminate AD and MCI patients from healthy controls, they had various limitations that prevent the recommendation of a single technique or tracer as an optimal biomarker. Newer research examining amyloid, tau, and microglial PET imaging in combination suggest an alternative approach in studying the disease process.
The presence of RBD in PD is associated with faster motor progression in patients with greater synuclein and dopaminergic pathology, and with higher risk of cognitive decline in patients with greater synuclein and amyloid pathology. Our findings provide an important direction toward understanding phenotypes and their prognosis in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.