A plasma discharge in a Helium gas reactor at different pressures and at low currents (0.25–0.45 A) has been investigated by Computational Fluid Dynamic modeling coupled with the Maxwell’s equations. The results show different discharge dynamics across the pressure range (0.1–8 MPa), with an arc discharge obtained at high pressure and a low current arc discharge observed at atmospheric pressure. A large density gradient at higher pressure causes a strong natural convection effect in the reactor. This density gradient affects drastically the discharge shape and the velocity field at high pressures while at atmospheric pressure, a lower density gradient was observed resulting in a low velocity magnitude. It has been observed that the velocity magnitude is not affected by the electric current. The discharge electric potential has been calculated by considering the electrical characterization of the electrodes and numerical results have been compared with experimental results. The comparison shows a good agreement between the measured and calculated discharge electric potential at lower pressures. These devices can be used as plasma sources for wastewater treatment.
SIM.QM-S7 was performed to assess the analytical capabilities of National Metrology Institutes (NMIs) and Designated Institutes (DIs) of SIM members (or other regions) for the accurate determination of trace metals in drinking water. The study was proposed by the coordinating laboratories National Research Council Canada (NRC) and Centro Nacional de Metrologia (CENAM) as an activity of Inorganic Analysis Working Group (IAWG) of Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included 16 NMIs/DIs from 15 countries. No measurement method was prescribed by the coordinating laboratories. Therefore, NMIs used measurement methods of their choice. However, the majority of NMIs/DIs used ICP-MS.
This SIM.QM-S7 Supplementary Comparison provides NMIs/DIs with the needed evidence for CMC claims for trace elements in fresh waters and similar matrices.
Main text
To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.
The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
A Computational Fluid Dynamics (CFD) model has been developed to investigate the time evolution of a Helium plasma discharge at high pressures (from 2 -8 MPa) and low electric current (0.35 A), including the interaction between the plasma and the electromagnetic fields, under Local Thermodynamic Equilibrium (LTE) assumption. To account for pressure dependence, novel thermodynamic and transport properties have been calculated in a wide pressure and temperature range. The model has been further improved by considering the effect of plasma-electrode interactions and the formation of the plasma sheath. High Performance Computing (HPC) was used to solve the CFD simulation, focusing on reference cases at 8 MPa and 0.35 A. Numerical results have shown that the sheath model and updated transport and thermodynamic properties have a significant impact on the electric potential, resulting in very good agreement between the simulation and experimental values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.