Monocyte-to-macrophage differentiation is a critical event that accentuates atherosclerosis by promoting an inflammatory environment within the vessel wall. In this study, we investigated the molecular mechanisms responsible for monocyte-to-macrophage differentiation and, subsequently, the effect of metformin in regressing angiotensin II (Ang-II)-mediated atheromatous plaque formation in ApoE 2/2 mice. AMPK activity was dose and time dependently downregulated during phorbol myristate acetate (PMA)-induced monocyteto-macrophage differentiation, which was accompanied by an upregulation of proinflammatory cytokine production. Of note, AMPK activators metformin and AICAR significantly attenuated PMA-induced monocyteto-macrophage differentiation and proinflammatory cytokine production. However, inhibition of AMPK activity alone by compound C was ineffective in promoting monocyte-to-macrophage differentiation in the absence of PMA. On the other hand, inhibition of c-Jun N-terminal kinase activity inhibited PMA-induced inflammation but not differentiation, suggesting that inflammation and differentiation are independent events. In contrast, inhibition of STAT3 activity inhibited both inflammation and monocyte-to-macrophage differentiation. By decreasing STAT3 phosphorylation, metformin and AICAR through increased AMPK activation caused inhibition of monocyte-to-macrophage differentiation.Metformin attenuated Ang-II-induced atheromatous plaque formation and aortic aneurysm in ApoE 2/2 mice partly by reducing monocyte infiltration. We conclude that the AMPK-STAT3 axis plays a pivotal role in regulating monocyte-to-macrophage differentiation and that by decreasing STAT3 phosphorylation through increased AMPK activity, AMPK activators inhibit monocyte-tomacrophage differentiation.
Intrahepatic and extrahepatic metastases are frequently detected in hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is believed to drive metastasis. There are not many well-established model systems to study EMT in HCC. Here we identified an atypical EMT while characterizing a population of mesenchymal cells in Huh7.5 hepatoma cell cultures. Cells with distinct morphology appeared during geneticin treatment of Huh7.5 cultures. Molecular characterization of geneticin resistant Huh7.5M cells confirmed EMT. Huh7.5M cells expressed cancer stem cell markers. p38MAPK and ERK1/2 were substantially activated in Huh7.5M cells. Their Inhibition elevated E-Cadherin expression with concerted suppression of Vimentin and anchorage independent growth in Huh7.5M cells. TGFβ could not induce EMT in Huh7.5 cultures, but enriched mesenchymal populations, similar to geneticin. Huh7.5M cells formed more aggressive solid tumors, primarily comprising cells with epithelial morphology, in nude mice. Canonical EMT-TFs did not participate in this atypical EMT, indicating that the established canonical EMT-TFs do not drive every EMT and there is a dire need to identify additional factors. The system that we characterized is a unique model to study EMT, MET and biphasic TGFβ signaling in HCC and offers considerable potential to facilitate more insightful studies on deeper questions in tumor metastasis.
The histocytochemical and molecular analysis of cells that constitute the aortic valve (AV) of the rat heart was done in this study. We have focussed on the identity of cells in the spongiosal layer of the valve by immunofluorescence studies using lineage specific markers and cytochemical staining. We have established two-dimensional (2D) cultures of cells from isolated rat AV leaflets and maintained endothelial and interstitial valvular cells (IVC) over a period of six to eight weeks. Using "passage 0" cells from 2D valvular cultures, we could reconstruct the three-dimensional (3D) valvular tissue in collagen gels that showed very similar cellular organization and marker expression profile, as that of the native tissue. Lineage specific markers in the native tissue and cell cultures were studied by Reverse Transcriptase-PCR and immunofluorescence for VCAM-I, -SMA, collagen I, CD71, collagen II, and Ecadherin markers. This is the first report on the identification of cell lineages in the spongiosal layer of AV and the successful reconstruction of 3D valvular tissue from primary cell cultures of AV.
BACKGROUND Chronic liver diseases (CLD) are the major public health burden due to the continuous increasing rate of global morbidity and mortality. The inherent limitations of organ transplantation have led to the development of stem cell-based therapy as a supportive and promising therapeutic option. However, identifying the fate of transplanted cells in vivo represents a crucial obstacle. AIM To evaluate the potential applicability of DiD dye as a cell labeling agent for long-term, and non-invasive in vivo tracking of transplanted cells in the liver. METHODS Magnetically sorted, epithelial cell adhesion molecule positive (1 × 10 6 cells/mL) fetal hepatic progenitor cells were labeled with DiD dye and transplanted into the livers of CLD-severe combined immunodeficiency (SCID) mice. Near-infrared (NIR) imaging was performed for in vivo tracking of the DiD-labeled transplanted cells along with colocalization of hepatic markers for up to 80 d. The existence of human cells within mouse livers was identified using Alu polymerase chain reaction and sequencing. RESULTS NIR fluorescence imaging of CLD-SCID mice showed a positive fluorescence signal of DiD at days 7, 15, 30, 45, 60, and 80 post-transplantation. Furthermore, positive staining of cytokeratin, c-Met, and albumin colocalizing with DiD fluorescence clearly demonstrated that the fluorescent signal of hepatic markers emerged from the DiD-labeled transplanted cells. Recovery of liver function was also observed with serum levels of glutamic-oxaloacetic transaminase, glutamate-pyruvate transaminase, and bilirubin. The detection of human-specific Alu sequence from the transplanted mouse livers provided evidence for the survival of transplanted cells at day 80. CONCLUSION DiD-labeling is promising for long-term and non-invasive in vivo cell tracking, and understanding the regenerative mechanisms incurred by the transplanted cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.