Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth–Holm–Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture–based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.
The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in twodimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (β) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of β-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.
Background and objective Inhalation of high concentrations of respirable crystalline silica (RCS) can lead to silicosis. RCS contains varying levels of iron, which can cause oxidative stress and stimulate ferritin production. This study evaluated iron‐related and inflammatory markers in control and silicosis patients. Methods A cohort of stone benchtop industry workers (n = 18) were radiologically classified by disease severity into simple or complicated silicosis. Peripheral blood and bronchoalveolar lavage (BAL) were collected to measure iron, ferritin, C‐reactive protein, serum amyloid A and serum silicon levels. Ferritin subunit expression in BAL and transbronchial biopsies was analysed by reverse transcription quantitative PCR. Lipid accumulation in BAL macrophages was assessed by Oil Red O staining. Results Serum iron levels were significantly elevated in patients with silicosis, with a strong positive association with serum ferritin levels. In contrast, markers of systemic inflammation were not increased in silicosis patients. Serum silicon levels were significantly elevated in complicated disease. BAL macrophages from silicosis patients were morphologically consistent with lipid‐laden foamy macrophages. Ferritin light chain (FTL) mRNA expression in BAL macrophages was also significantly elevated in simple silicosis patients and correlated with systemic ferritin. Conclusion Our findings suggest that elevated iron levels during the early phases of silicosis increase FTL expression in BAL macrophages, which drives elevated BAL and serum ferritin levels. Excess iron and ferritin were also associated with the emergence of a foamy BAL macrophage phenotype. Ferritin may represent an early disease marker for silicosis, where increased levels are independent of inflammation and may contribute to fibrotic lung remodelling.
Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule β-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of β-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of β-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.