Pre- and post-treatment of optical fibers is typically used to improve the fiber Bragg grating (FBG) fabrication process. Here, we investigate experimentally the effects of femtosecond photo-treatment on the ability to inscribe and erase FBGs in standard, non-sensitized, silica SMF fibers. We observe "immunity" to inscription after applying a suitable pre-treatment to the fiber and full "erasure" of the FGB after applying a suitable post-treatment. We characterize the required photo-treatment parameters and compare to FBG inscription on an untreated fiber. We believe that pre/post-photo-treatment of the fibers with fs pulses may have practical advantages such as modifying standard grating structures or observing ultrafast transient effects more clearly.
Two slightly shifted gratings are inscribed, one over the other, in an SMF fiber with a femtosecond laser and a phase mask. The transmission spectrum of the complex structure is similar to that of a phase-shifted grating; yet, the fabrication process is fast and simple compared to standard methods. High-quality semi-phase-shifted gratings with -24 dB transmission loss and <100 pm transmission bandwidth are presented. Their application as highly narrow micro-resonators and notch filters seems feasible.
We report on the fabrication of arsenic tri-sulfide chalcogenide strip waveguides on a sapphire substrate, suitable for guiding 0.55-5 μm wavelengths. Propagation losses measured using the Fabry-Perot resonator technique are 2.78 dB/cm. The chalcogenide layer refractive index dispersion is evaluated by measuring the transmission as a function of wavelength prior to waveguide fabrication. Numerical simulations are used to compare between silica and sapphire substrates for mid-IR transmittance and to calculate the waveguide's effective refractive index in a suggested design. The use of a low-loss sapphire substrate redefines the mid-IR boundaries of chalcogenide waveguides for linear and nonlinear applications.
We demonstrate, for the first time to our knowledge, fast all-optical switching in standard silica fibers, based on a transient Bragg grating. The grating is implemented in the fiber using an immunization photo-pretreatment process, followed by side illumination with femtosecond laser pulses through a suitable phase mask. Each pulse is nonlinearly absorbed, creating a thermal grating that is washed out by thermal diffusion. Reflections measured from such gratings are characterized by a very fast rise time, nanoseconds duration, and a high extinction ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.