Pulsar glitches are rapid spin-up events that occur in the rotation of neutron stars, providing a valuable probe into the physics of the interiors of these objects. Long-term monitoring of a large number of pulsars facilitates the detection of glitches and the robust measurements of their parameters. The Jodrell Bank pulsar timing programme regularly monitors more than 800 radio pulsars and has accrued, in some cases, over 50 years of timing history on individual objects. In this paper we present 106 new glitches in 70 radio pulsars as observed up to the end of 2018. For 70 per cent of these pulsars, the event we report is its only known glitch. For each new glitch we provide measurements of its epoch, amplitude and any detected changes to the spin-down rate of the star. Combining these new glitches with those listed in the Jodrell Bank glitch catalogue we analyse a total sample of 543 glitches in 178 pulsars. We model the distribution of glitch amplitudes and spin-down rate changes using a mixture of two Gaussian components. We corroborate the known dependence of glitch rate and activity on pulsar spin-down rates and characteristic ages, and show that younger pulsars tend to exhibit larger glitches. Pulsars with spin-down rates between 10−14 Hz s−1 and 10−10.5 Hz s−1 show a mean reversal of 1.8 per cent of their spin-down as a consequence of glitches. Our results are qualitatively consistent with the superfluid vortex unpinning models of pulsar glitches.
Context. Pulsar radio emission undergoes dispersion due to the presence of free electrons in the interstellar medium (ISM). The dispersive delay in the arrival time of the pulsar signal changes over time due to the varying ISM electron column density along the line of sight. Accurately correcting for this delay is crucial for the detection of nanohertz gravitational waves using pulsar timing arrays. Aims. We aim to demonstrate the precision in the measurement of the dispersion delay achieved by combining 400−500 MHz (BAND3) wide-band data with those at 1360−1460 MHz (BAND5) observed using the upgraded GMRT, employing two different template alignment methods. Methods. To estimate the high precision dispersion measure (DM), we measure high precision times-of-arrival (ToAs) of pulses using carefully generated templates and the currently available pulsar timing techniques. We use two different methods for aligning the templates across frequency to obtain ToAs over multiple sub-bands and therefrom measure the DMs. We study the effects of these two different methods on the measured DM values in detail. Results. We present in-band and inter-band DM estimates of four pulsars over the timescale of a year using two different template alignment methods. The DMs obtained using both these methods show only subtle differences for PSRs J1713+0747 and J1909−3744. A considerable offset is seen in the DM of PSRs J1939+2134 and J2145−0750 between the two methods. This could be due to the presence of scattering in the former and profile evolution in the latter. We find that both methods are useful but could have a systematic offset between the DMs obtained. Irrespective of the template alignment methods followed, the precision on the DMs obtained is about 10−3 pc cm−3 using only BAND3 and 10−4 pc cm−3 after combining data from BAND3 and BAND5 of the uGMRT. In a particular result, we detected a DM excess of about 5 × 10−3 pc cm−3 on 24 February 2019 for PSR J2145−0750. This excess appears to be due to the interaction region created by fast solar wind from a coronal hole and a coronal mass ejection observed from the Sun on that epoch. A detailed analysis of this interesting event is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.