The objective of this work was to assess the effect of 10% (w/v) polyvinylpyrrolidone (PVP) on the pattern of intracellular ice formation (IIF) in human adipose tissue derived adult stem cells (ASCs) in the absence of serum and other cryoprotective agents (CPAs). The freezing experiments were carried out using a fluorescence microscope equipped with a Linkam cooling stage using two cooling protocols. Both the cooling protocols had a common cooling ramp: cells were cooled from 20 degrees C to -8 degrees C at 20 degrees C/min and then further cooled to -13 degrees C at 1 degrees C/min. At this point we employed either cooling protocol 1: the cells were cooled from -13 degrees C to -40 degrees C at a pre-determined cooling rate of 1, 5, 10, 20, or 40 degrees C/min and then thawed back to 20 degrees C at 20 degrees C/min; or cooling protocol 2: the cells were re-warmed from -13 degrees C to -5 degrees C at 20 degrees C/min and then re-cooled at a pre-determined rate of 1, 5, 10, 20, or 40 degrees C/min to -40 degrees C. Almost all (>95%) of the ASCs frozen in 1x PBS and protocol 1 exhibited IIF. However, almost none (<5%) of the ASCs frozen in 1x PBS and protocol 2 exhibited IIF. Similarly, almost all (>95%) of the ASCs frozen in 10% PVP in PBS and protocol 1 exhibited IIF. However, ~0, ~40, ~47, ~67, and ~100% of the ASCs exhibited IIF when frozen in 10% PVP in PBS and utilizing protocol 2 at a cooling rate of 1, 5, 10, 20, or 40 degrees C/min, respectively.
The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with nonhomogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of species concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burner. Water vapor transitions at 1391.67 and 1442.67 nm are probed using calibration-free wavelength modulation spectroscopy with second harmonic detection (WMS-2f). A single collimated laser beam is swept parallel to the burner surface, where scans yield pairs of line-of-sight (LOS) data at multiple radial locations. Radial profiles of absorption data are reconstructed using Tikhonov regularized Abel inversion, which suppresses the amplification of experimental noise that is typically observed for reconstructions with high spatial resolution. Based on spectral data reconstructions, temperatures and mole fractions are calculated point-by-point. Here, a least-squares approach addresses difficulties due to modulation depths that cannot be universally optimized due to a nonuniform domain. Experimental results show successful reconstructions of temperature and mole fraction profiles based on two-transition, nonoptimally modulated WMS-2f and Tikhonov regularized Abel inversion, and thus validate the technique as a viable diagnostic tool for flame measurements.
Temperature and concentration distributions of a simulated flame were reconstructed with the help of computer tomography and tunable diode laser absorption spectroscopy (TDLAS). Reconstructions were based on the simulated numerical values of temperature and concentration of a stationary flame. Integrated absorption measurements along the line-of-sight (LOS) across the flames due to absorption by water vapor (H2O) in the near infra-red (NIR) region, specifically the 6930–6940 cm−1 range, were simulated to obtain the projection values for tomography. Spectroscopic parameters for the absorptions transitions, such as line-strengths, transition wavenumbers, collisional broadening coefficients and coefficients for their temperature dependency were selected from the HITRAN 2004 database. Simulated LOS data are inverted using a multiplicative algebraic reconstruction technique (MART), which are known to outperform traditional filtered back projection methods for cases with limited numbers of views. Based on spatially resolved reconstructions of spectroscopic data, temperature and concentration distributions are calculated using the wavelength modulation spectroscopy with second harmonic detection (WMS-2f) technique. A parametric study based on the number of views, orientation of views and number of rays per view required by the ART is performed in order to assess requirements for an acceptable reconstruction.
Extensive studies document the effect of nanoparticles on thermal properties of fluids, such as thermal conductivity, although very few exist at subzero temperatures. The current study reports the effect of 1.4 nm palmitoyl nanogold particles (NPs) on the freezing properties of phosphate buffered saline solutions with the help of a differential scanning calorimeter. The results show that NPs have a complex effect on the two properties of interest, i.e., homogeneous nucleation temperature (Th) and phase change temperature (or the melting temperature, Tm). The homogeneous nucleation temperature was significantly elevated at a concentration of 1 nM/ml NPs with 0.167% (v/v) DMSO, and 3 nM/ml NPs with 0.50% (v/v) DMSO concentration, whereas at the other concentrations (1.2 nM/ml NPs with 0.20% DMSO, 1.5 nM/ml NPs with 0.25% DSMO, and 6 nM/ml NPs with 1% DMSO), it was significantly depressed. A similar phenomenon was also noticed in the measured values of the melting temperature of PBS solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.