Lissencephaly is a severe brain malformation in humans. To study the function of the gene mutated in lissencephaly (LIS1), we deleted the first coding exon from the mouse Lis1 gene. The deletion resulted in a shorter protein (sLIS1) that initiates from the second methionine, a unique situation because most LIS1 mutations result in a null allele. This mutation mimics a mutation described in one lissencephaly patient with a milder phenotype. Homozygotes are early lethal, although heterozygotes are viable and fertile. Most strikingly, the morphology of cortical neurons and radial glia is aberrant in the developing cortex, and the neurons migrate more slowly. This is the first demonstration, to our knowledge, of a cellular abnormality in the migrating neurons after Lis1 mutation. Moreover, cortical plate splitting and thalomocortical innervation are also abnormal. Biochemically, the mutant protein is not capable of dimerization, and enzymatic activity is elevated in the embryos, thus a demonstration of the in vivo role of LIS1 as a subunit of PAF-AH. This mutation allows us to determine a hierarchy of functions that are sensitive to LIS1 dosage, thus promoting our understanding of the role of LIS1 in the developing cortex.brain development ͉ lissencephaly ͉ platelet-activating factor ͉ acetylhydrolase ͉ gene targeting L IS1 was identified as the gene mutated in a severe human developmental brain malformation known as lissencephaly (''smooth brain'') type I (1). Patients with lissencephaly often are severely retarded, epileptic, and die at a young age. The most striking feature of the brains of affected individuals is that they are smooth and largely devoid of the sulci and gyri that characterize the normal brain. The lissencephalic brain exhibits defects in neuronal migration that result in poor organization of cortical layering. A reduced surface area and lack of cortical folds are also seen, possibly because of an overall reduced number of neurons (2). Mutations in two different genes may result in type I lissencephaly: LIS1, an autosomal gene located on chromosome 17p13.3 (1), and doublecortin, an X-linked gene (3, 4). The pattern of expression of LIS1 in the nervous system suggested that the mouse would be a suitable organism for studying the role of LIS1 during brain development (5). Mouse embryos homozygous for the null Lis1 allele (Lis1Ϫ͞Ϫ) die after implantation, whereas heterozygotes are viable and fertile (6). A half dosage of LIS1 affects neuronal migration only slightly in the developing cortex, whereas adult layer organization appears normal. Further gene dosage reduction severely obstructs cortical and hippocampal organization (6). LIS1 interacts with many proteins and is involved in several basic cellular functions, including mitosis, nuclear positioning, and microtubule regulation (for review, see ref. 7). To better understand the function of LIS1 and its role in neuronal migration, we produced Lis1 mutant mice by using cre recombinase-mediated loxP deletion. Our mutation resulted in a shorter LIS1 p...
The growth and survival of the preimplantation mammalian embryo may be regulated by several autocrine trophic factors that have redundant or overlapping actions. One of the earliest trophic factors to be produced is embryo-derived platelet-activating factor (1-O-alky-2-acetyl-sn-glyceryl-3-phosphocholine). The addition of platelet-activating factor to embryo culture media exerted a trophic effect, but structurally related lipids (3-O-alky-2-acetyl-sn-glyceryl-1-phosphocholine, 1-O-alky-sn-glyceryl-3-phosphocholine, octadecyl-phosphocholine) had no effect. Platelet-activating factor induced a pertussis toxin-sensitive [Ca2+]i transient in two-cell embryos that did not occur in platelet-activating factor-receptor null (Pafr–/–) genotype embryos. Fewer Pafr–/– mouse zygotes developed to the blastocyst stage in vitro compared with Pafr+/+ zygotes (P<0.02), those that developed to blastocysts had fewer cells (P<0.001) and more cells with fragmented nuclei (P<0.001). The inhibition of 1-O-phosphatidylinositol 3-kinase (LY294002 (3 μM and 15 μM) and wortmannin (10 nM and 50 nM)) caused a dose-dependent inhibition of platelet-activating factor-induced [Ca2+]i transients (P<0.001). The two-cell embryo expressed 1-O-phosphatidylinositol 3-kinase catalytic subunits p110α, β, γ and δ, and regulatory subunits p85α and β. LY294002 and wortmannin each caused a significant reduction in the proportion of embryos developing to the morula and blastocyst stages in vitro, reduced the number of cells within each blastocyst, and significantly increased the proportion of cells in blastocysts with fragmented nuclei. The results indicate that embryo-derived platelet-activating factor (and other embryotrophic factors) act through its membrane receptor to enhance embryo survival through a 1-O-phosphatidylinositol 3-kinase-dependent survival pathway.
Lissencephaly, a severe brain malformation, may be caused by mutations in the LIS1 gene. LIS1 encodes a microtubule-associated protein (MAP) that is also part of the enzyme complex, platelet-activating factor acetylhydrolase. LIS1 is also found in a complex with two protein kinases; a T-cell Tat-associated kinase, which contains casein-dependant kinase (CDK) activating kinase (CAK), as well as CAK-inducing activity, and with a spleen protein-tyrosine kinase similar to the catalytic domain of p72syk. As phosphorylation is one of the ways to control cellular localization and protein±protein interactions, we investigated whether LIS1 undergoes this posttranslational modification. Our results demonstrate that LIS1 is a developmentally regulated phosphoprotein. Phosphorylated LIS1 is mainly found in the MAP fraction. Phosphoamino acid analysis revealed that LIS1 is phosphorylated on serine residues. Alkaline phosphatase treatment reduced the number of visible LIS1 isoforms.In-gel assays demonstrate a 50-kDa LIS1 kinase that is enriched in microtubule-associated fractions. In vitro, LIS1 was phosphorylated by protein kinase CKII (casein kinase II), but not many other kinases that were tested. We suggest that LIS1 activity may be regulated by phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.