Background With the rapid adoption of electronic medical records (EMRs), there is an ever-increasing opportunity to collect data and extract knowledge from EMRs to support patient-centered stroke management. Objective This study aims to compare the effectiveness of state-of-the-art automatic text classification methods in classifying data to support the prediction of clinical patient outcomes and the extraction of patient characteristics from EMRs. Methods Our study addressed the computational problems of information extraction and automatic text classification. We identified essential tasks to be considered in an ischemic stroke value-based program. The 30 selected tasks were classified (manually labeled by specialists) according to the following value agenda: tier 1 (achieved health care status), tier 2 (recovery process), care related (clinical management and risk scores), and baseline characteristics. The analyzed data set was retrospectively extracted from the EMRs of patients with stroke from a private Brazilian hospital between 2018 and 2019. A total of 44,206 sentences from free-text medical records in Portuguese were used to train and develop 10 supervised computational machine learning methods, including state-of-the-art neural and nonneural methods, along with ontological rules. As an experimental protocol, we used a 5-fold cross-validation procedure repeated 6 times, along with subject-wise sampling. A heatmap was used to display comparative result analyses according to the best algorithmic effectiveness (F1 score), supported by statistical significance tests. A feature importance analysis was conducted to provide insights into the results. Results The top-performing models were support vector machines trained with lexical and semantic textual features, showing the importance of dealing with noise in EMR textual representations. The support vector machine models produced statistically superior results in 71% (17/24) of tasks, with an F1 score >80% regarding care-related tasks (patient treatment location, fall risk, thrombolytic therapy, and pressure ulcer risk), the process of recovery (ability to feed orally or ambulate and communicate), health care status achieved (mortality), and baseline characteristics (diabetes, obesity, dyslipidemia, and smoking status). Neural methods were largely outperformed by more traditional nonneural methods, given the characteristics of the data set. Ontological rules were also effective in tasks such as baseline characteristics (alcoholism, atrial fibrillation, and coronary artery disease) and the Rankin scale. The complementarity in effectiveness among models suggests that a combination of models could enhance the results and cover more tasks in the future. Conclusions Advances in information technology capacity are essential for scalability and agility in measuring health status outcomes. This study allowed us to measure effectiveness and identify opportunities for automating the classification of outcomes of specific tasks related to clinical conditions of stroke victims, and thus ultimately assess the possibility of proactively using these machine learning techniques in real-world situations.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Objectives: Advances in real-time data collection and analysis represent an emerging theme that has integrated stakeholders in pursuit of value-added health management guidance. This research aims identify outcomes to be evaluated in a value-based program for stroke patients and present preliminary results of a data analysis structure used to develop computational models to automatize outcomes identification from EMR. Methods: Outcomes identification step was based on literature review, including ICHOM standard stroke set and specific studies discussing stroke outcomes, followed by discussion with experts. The outcomes identified were classified into three categories of variables: structure (safe and effective service), process (clinical management and treatment process), and clinical (Rankin, self-care, communication, and cognitive capability). A spreadsheet was built for Python algorithms training process. A multidisciplinary team is working on extracting structured information from EMR using supervised machine learning approaches. Results: A total of 25 outcomes were identified and transformed in variables that can be extracted from EMR, 12 (Structure), 05 (Process), 08 (clinical answer). The definition of each semantic concept and the value assigned to each word is predetermined through an automatically generated language model. Initial tests with patients' evolution data began to be performed to validate algorithm performance. A total of 4932 sentences were already evaluated and our preliminary results for 19 variables we have trained showed promising results with assertiveness around 0.70 for few variables and in average 50% of assertiveness evaluated by F1-scores and MCC. The research is being continued and further data will contribute to robustness. Algorithm may be scaled to evaluate approximately 950 patients from 4 hospitals. Conclusions: Progress in artificial intelligence for data analysis is essential to enable more effective health-care management. This research is unprecedented in Brazil in discussing feasibility of making value-oriented priority care lines and has potential to contribute, on national scale, to value-based health-care management programs.
BACKGROUND With the rapid adoption of electronic medical records (EMRs), there is an ever-increasing opportunity to collect data and extract knowledge from EMRs to support patient-centered stroke management. OBJECTIVE This study aims to compare the effectiveness of state-of-the-art automatic text classification methods in classifying data to support the prediction of clinical patient outcomes and the extraction of patient characteristics from EMRs. METHODS Our study addressed the computational problems of information extraction and automatic text classification. We identified essential tasks to be considered in an ischemic stroke value-based program. The 30 selected tasks were classified (manually labeled by specialists) according to the following value agenda: tier 1 (achieved health care status), tier 2 (recovery process), care related (clinical management and risk scores), and baseline characteristics. The analyzed data set was retrospectively extracted from the EMRs of patients with stroke from a private Brazilian hospital between 2018 and 2019. A total of 44,206 sentences from free-text medical records in Portuguese were used to train and develop 10 supervised computational machine learning methods, including state-of-the-art neural and nonneural methods, along with ontological rules. As an experimental protocol, we used a 5-fold cross-validation procedure repeated 6 times, along with <i>subject-wise sampling</i>. A heatmap was used to display comparative result analyses according to the best algorithmic effectiveness (F1 score), supported by statistical significance tests. A feature importance analysis was conducted to provide insights into the results. RESULTS The top-performing models were support vector machines trained with lexical and semantic textual features, showing the importance of dealing with noise in EMR textual representations. The support vector machine models produced statistically superior results in 71% (17/24) of tasks, with an F1 score >80% regarding care-related tasks (patient treatment location, fall risk, thrombolytic therapy, and pressure ulcer risk), the process of recovery (ability to feed orally or ambulate and communicate), health care status achieved (mortality), and baseline characteristics (diabetes, obesity, dyslipidemia, and smoking status). Neural methods were largely outperformed by more traditional nonneural methods, given the characteristics of the data set. Ontological rules were also effective in tasks such as baseline characteristics (alcoholism, atrial fibrillation, and coronary artery disease) and the Rankin scale. The complementarity in effectiveness among models suggests that a combination of models could enhance the results and cover more tasks in the future. CONCLUSIONS Advances in information technology capacity are essential for scalability and agility in measuring health status outcomes. This study allowed us to measure effectiveness and identify opportunities for automating the classification of outcomes of specific tasks related to clinical conditions of stroke victims, and thus ultimately assess the possibility of proactively using these machine learning techniques in real-world situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.