Abstract-A new type of newe cuff electrode consisting of conductive segments embedded within a self-curling sheath of biocompatihle insulation has been developed. This spiral nerve cuff is biased to selfwrap around peripheral nerves and possesses a "self-sizing" property, presenting an alternative to present commercially available, fixed-size nerve cuffs that are manually wrapped around nerves and sutured shut ("split-cylinder" cuffs). Spiral cuff design and manufacture are described.We hypothesize that unlike traditional cuffs, the spiral cuff potentially can be implanted safely when sized to fit peripheral nerves snugly. Theoretical pressure analyses of traditional and spiral cuffs that support this hypothesis are presented. These analyses are designed to predict the minimum CNR (cuff diameter/nerve diameter ratio) at which there is no interference with intraneural blood flow. A safe CNR of 0.997 is predicted for a 1 mm split-cylinder cuff, while a safe CNR of 0.83 is predicted for a 1 mm spiral cuff. The quantitative relationships between nerve size and safe cuff size are detailed. Results of a preliminary experiment in which snug spiral cuffs were implanted on feline peripheral nerve support the prediction that they may be safe.
The effects of imbalanced biphasic stimulation were studied on cat skeletal muscle to determine if greater charge densities can be safely used than with balanced or monophasic stimulation. The results of the study indicate that imbalanced biphasic stimulation can be tolerated safely by tissue at or below a net dc current density of 35 microA/mm2 and not safely tolerated at or above a net dc current of 50 microA/mm2. Monophasic stimulation has been shown to be safe at or below net dc current levels of 10 microA/mm2 and in these studies we found it was not safe at or above net dc current levels of 20 microA/mm2. Stimuli were applied to muscles via coiled wire intramuscular electrodes using a regulated current source. Since the safe average current density was higher for imbalanced biphasic stimulation than for monophasic stimulation, this suggests that: (a) pH change is not the primary reaction causing tissue damage and (b) the damaging electrochemical process that takes place during a cathodic stimulation pulse can be reversed by an anodic pulse having substantially less charge than its companion cathodic pulse. We conclude that greater cathodic charge densities can be safely employed with imbalanced biphasic stimulation than with either monophasic stimulation or balanced charge biphasic stimulation.
Single and multi-strand stainless steel and cobalt-nickel alloy wires, with strand diameters from 26 to 46 microns, were fatigue tested using a modified rotating bending test to determine what factors are most important in controlling fatigue life. The relation between cyclic strain and cyclic life was determined for each material by cyclically straining test specimens at various strain ranges and recording the number of cycles to failure. The results show that (a) the fatigue curves of the 316LVM, MP35N, DBS, and Syntacoben wires are very similar and have many of the same fatigue characteristics of specimens of large cross section. (b) Multi-stranded wires have the same average fatigue life as their individual constituent strands, but the variance of that life is smaller. (c) Deformities in the wire, which are created during the manufacturing, appear to have the effect of shortening the fatigue life of these small section wires. (d) Observation of wire fracture surfaces show a relatively small crack propagation zone and a large fast fracture zone suggesting that most of the fatigue life of these small wires is in the original crack formation, which creates a large stress concentration and quickly leads to wire failure. (e) The size of the wire cross sectional area is of secondary importance compared to the amplitude of the maximum cyclic strain of the individual strands in determining fatigue life of the cable. To maximize the fatigue life of electrodes in vivo, the highest fatigue life for a given bending radius of curvature is desired. This suggests wire strands should be manufactured at the smallest diameter possible (without introducing structural flaws) to maximize service life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.