Heat stress has adverse effects on the reproductive performances of dairy cattle and buffaloes. The dairy sector is a more vulnerable to global warming and climate change. The temperature humidity index (THI) is the widely used index to measure the magnitude of heat stress in animals. The objective of this paper was to assess the decline in performances of reproductive traits such as service period, conception rate and pregnancy rate of dairy cattle and buffaloes with respect to increase in THI. The review stated that service period in cattle is affected by season of calving for which cows calved in summer had the longest service period. The conception rate and pregnancy rate in dairy cattle were found decreased above THI 72 while a significant decline in reproductive performances of buffaloes was observed above threshold THI 75. The non-heat stress zone (HSZ) (October to March) is favorable for optimum reproductive performance, while fertility is depressed in HSZ (April to September) and critical HSZ (CHSZ) (May and June). Heat stress in animals has been associated with reduced fertility through its deleterious impact on oocyte maturation and early embryo development. The management strategies viz., nutrition modification, environment modification and timed artificial insemination protocol are to be strictly operated to ameliorate the adverse effects of heat stress in cattle and buffaloes during CHSZ to improve their fertility. The identification of genes associated with heat tolerance, its incorporation into breeding program and the inclusion of THI covariate effects in selection index should be targeted for genetic evaluation of dairy animals in the hot climate.
The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry.
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti‐inflammatory, cardio‐protective, hepato‐protective, neuro‐protective, tissue‐protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low‐cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this “Miracle Tree.”
Transplanting after repeated puddling is the conventional method of rice (Oryza sativa) growing which is not only intensive water user but also cumbersome and laborious. Different problems like lowering water table, scarcity of labour during peak periods, deteriorating soil health demands some alternative establishment method to sustain productivity of rice as well as natural resources. Direct seeded rice (DSR), probably the oldest method of crop establishment, is gaining popularity because of its low-input demand. It offers certain advantages viz., it saves labour, requires less water, less drudgery, early crop maturity, low production cost, better soil physical conditions for following crops and less methane emission, provides better option to be the best fit in different cropping systems. Comparative yields in DSR can be obtained by adopting various cultural practices viz., selection of suitable cultivars, proper sowing time, optimum seed rate, proper weed and water management. It can also be stated that soil problems related to rice and following crops can be solved with direct seeding. There are several constraints associated with shift from PTR to DSR, such as high weed infestation, evolution of weedy rice, increase in soil borne pathogens (nematodes), nutrient disorders, poor crop establishment, lodging, incidence of blast, brown leaf spot etc. By overcoming these constraints DSR can prove to be a very promising, technically and economically feasible alternative to PTR.The potential benefits and constraints associated with adoption of DSR are discussed in this paper.
Breed additive and non-additive effects, and heritabilities of birth weight (BWT), weaning weight (WWT), 6 months weight (SMWT), yearling weight (YWT), eighteen months weight (EWT), 2 years weight (TWT) and average daily weight gain from birth to 6 months (ADG1) and from 6 months to 2 years (ADG2) were estimated in Ethiopian Boran (B) cattle and their crosses with Holstein Friesian (F) in central Ethiopia. The data analysed were spread over 15 years. Ethiopian Boran were consistently lighter (p < 0.01) than the B-F crosses at all ages. Ethiopian Boran also gained lower weight than all the crosses. At birth, 50% F crosses were significantly (p < 0.01) lighter than all the other crosses. However, the differences in SMWT, YWT, EWT, TWT, ADG1 and ADG2 were all non-significant among the crosses. The individual additive breed differences between B and F breeds were positive and significant (p < 0.01) for all traits. The individual heterosis effects were significant (p < 0.05) for all traits except WWT for which the effect was non-significant. The maternal heterosis effects were significant (p < 0.01) for BWT (2.5 kg) and WWT (-3.0 kg). The heritability estimates for all traits in B and crosses were generally moderate to high indicating that there is scope for genetic improvement through selection. Selection within B and crossbreeding should be the strategy to enhance the growth performance under such production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.