Freeze-dried banana powder represents an ideal source of nutrients and has not yet been used for probiotic incorporation. In this study, microencapsulation by freeze drying of probiotics Lactobacillus acidophilus and Lactobacillus casei was made using whey protein isolate (WPI), fructooligosaccharides (FOS), and their combination (WPI + FOS) at ratio (1:1). Higher encapsulation yield was found for (WPI + FOS) microspheres (98%). Further, microcapsules of (WPI + FOS) were used to produce a freeze-dried banana powder which was analyzed for bacterial viability under simulated gastrointestinal fluid (SGIF), stability during storage at 4 °C and 25 °C, and chemical and sensory properties. Results revealed that (WPI + FOS) microcapsules significantly increased bacteria stability in the product over 30 days of storage at 4 °C averaging (≥ 8.57 log CFU/g) for L. acidophilus and (≥ 7.61 log CFU/g) for L. Casei as compared to free cells. Bacteria encapsulated in microspheres (WPI + FOS) were not significantly affected by the SGIF, remaining stable up to 7.05 ± 0.1 log CFU/g for L.acidophilus and 5.48 ± 0.1 log CFU/g for L.casei after 90 min of incubation at pH 2 compared to free cells which showed minimal survival. Overall, encapsulated probiotics enriched freeze-dried banana powders received good sensory scores; they can therefore serve as safe probiotics food carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.