In this article, we establish sufficient conditions on the generalized Cesáro and Orlicz sequence spaces such that the class of all bounded linear operators between arbitrary Banach spaces with its sequence of s-numbers belonging to generates an operator ideal. The components of as a pre-quasi Banach operator ideal containing finite dimensional operators as a dense subset and its completeness are proved. Some inclusion relations between the operator ideals as well as the inclusion relations for their duals are obtained. Finally, we show that the operator ideal formed by and approximation numbers is small under certain conditions.
In this article, we explore the concept of the prequasi norm on Nakano special space of sequences (sss) such that its variable exponent in
0
,
1
. We evaluate the sufficient setting on it with the definite prequasi norm to configuration prequasi Banach and closed (sss). The Fatou property of different prequasi norms on this (sss) has been investigated. Moreover, the existence of a fixed point of Kannan prequasi norm contraction maps on the prequasi Banach (sss) and the prequasi Banach operator ideal constructed by this (sss) and
s
−
numbers have been examined.
Let E be a weighted Nakano sequence space or generalized Cesáro sequence space defined by weighted mean and by using s−numbers of operators from a Banach space X into a Banach space Y. We give the sufficient (not necessary) conditions on E such that the components SEX,Y≔T∈LX,Y:snTn=0∞∈E of the class SE form pre-quasi operator ideal, the class of all finite rank operators are dense in the Banach pre-quasi ideal SE, the pre-quasi operator ideal formed by the sequence of approximation numbers is strictly contained for different weights and powers, the pre-quasi Banach Operator ideal formed by the sequence of approximation numbers is small, and finally, the pre-quasi Banach operator ideal constructed by s−numbers is simple Banach space.
In this paper, we give the sufficient conditions on Orlicz-Cesáro mean sequence spaces cesφ, where φ is an Orlicz function such that the class Scesφ of all bounded linear operators between arbitrary Banach spaces with its sequence of s-numbers which belong to cesφ forms an operator ideal. The completeness and denseness of its ideal components are specified and Scesφ constructs a pre-quasi Banach operator ideal. Some inclusion relations between the pre-quasi operator ideals and the inclusion relations for their duals are explained. Moreover, we have presented the sufficient conditions on cesφ such that the pre-quasi Banach operator ideal generated by approximation number is small. The above results coincide with that known for cesp (1<p<∞).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.