Modeling safety-critical driver behavior at signalized intersections needs to account for the driver's planned decision process, where a driver executes a plan to avoid collision in multiple time steps. Such a process can be embedded in the Optimal Velocity Model (OVM) that traditionally assumes that drivers base their "mental intention" on a distance gap only. We propose and evaluate a data-driven OVM based on real-time inference of roadside traffic video data. First, we extract vehicle trajectory data from roadside traffic footage through our advanced video processing algorithm (VT-Lane) for a study site in Blacksburg, VA, USA. Vehicles engaged in car-following episodes are then identified within the extracted vehicle trajectories database, and the real-time time-to-collision (TTC) is calculated for all car-following instances. Then, we analyze the driver behavior to predict the shape of the underlying TTC-based desired velocity function. A clustering approach is used to assess car-following behavior heterogeneity and understand the reasons behind outlying driving behaviors at the intersection to design our model accordingly. The results of this assessment show that the calibrated TTC-based OVM can replicate the observed driving behavior by capturing the acceleration pattern with an error 20% lower than the gap distance-based OVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.