In this review article, we focus on the various types of materials used in biomedical implantable devices, including the polymeric materials used as substrates and for the packaging of such devices. Polymeric materials are used because of the ease of fabrication, flexibility, and their biocompatible nature as well as their wide range of mechanical, electrical, chemical, and thermal behaviors when combined with different materials as composites. Biocompatible and biostable polymers are extensively used to package implanted devices, with the main criteria that include gas permeability and water permeability of the packaging polymer to protect the electronic circuit of the device from moisture and ions inside the human body. Polymeric materials must also have considerable tensile strength and should be able to contain the device over the envisioned lifetime of the implant. For substrates, structural properties and, at times, electrical properties would be of greater concern. Section 1 gives an introduction of some medical devices and implants along with the material requirements and properties needed. Different synthetic polymeric materials such as polyvinylidene fluoride, polyethylene, polypropylene, polydimethylsiloxane, parylene, polyamide, polytetrafluoroethylene, poly(methyl methacrylate), polyimide, and polyurethane have been examined, and liquid crystalline polymers and nanocomposites have been evaluated as biomaterials that are suitable for biomedical packaging (section 2). A summary and glimpse of the future trend in this area has also been given (section 3). Materials and information used in this manuscript are adapted from papers published between 2010 and 2015 representing the most updated information available on each material.
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well-defined structures of polycaprolactone (PCL) and PCL- carbon nanotube (PCL-CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering.
Stable suspensions of submicron particles of cyclosporine, a water-insoluble drug, have been produced by rapid expansion from supercritical to aqueous solution (RESAS). To minimize growth of the cyclosporine particles, which would otherwise occur in the free jet expansion, the solution was sprayed into an aqueous Tween-80 (Polysorbate-80) solution. Steric stabilization by the surfactant impedes particle growth and agglomeration. The particles were an order of magnitude smaller than those produced by RESS into air without the surfactant solution. Concentrations as high as 38 mg/mL for 400-700 nm particles were achieved in a 5.0% (w/w) Tween-80 solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.