In staged fixed bed biomass combustion, primary air is supplied beneath the fuel bed with secondary air then provided above in the freeboard region. For fixed bed configurations, the freeboard is further divided into a primary freeboard length (LI), which is upstream of the secondary air and a secondary freeboard length (LII), measured from the secondary air all the way to the exhaust port. Despite extensive research into fixed bed configurations, no work has been successfully completed that resolves the effects of changing LI on fuel conversion, both in the fuel bed and within the freeboard of batch-type biomass combustors. In this study, experiments on a 202 mm diameter and 1500 mm long batch-type combustor have been conducted to determine the effects of changing primary freeboard length over three secondary to total air ratios (Qs/Qt) and two total air flow rates (Qt). The impact of these conditions has been studied on (i) intra-bed fuel conversion, measured through burning rate (kg/m−2 s−1), fuel bed temperature (°C) and ignition front velocity (mm-s−1), as well as (ii) post-bed fuel conversion in the freeboard, expressed through freeboard temperatures and emissions (NOx ppm, CO2%, CO ppm, O2%). The fuel used throughout the above experiments was Australian hardwood pelletised biomass. Results show that changes to primary freeboard length over LI = 200 mm, 300 mm and 550 mm, or LI/D = 1.00, 1.48 and 2.72, respectively, affect both intra-bed and freeboard (post-bed) performance indicators. The highest values of burning rate, ignition front velocity and fuel bed temperature were observed for interim values of LI/D = 1.48 at Qs/Qt = 0.25 and Qt = 0.358 kg/m−2 s−1. Primary freeboard lengths of LI/D = 1.00 and 1.48 were found to have higher freeboard temperatures, NOx and CO2 as well as lower CO and O2 values as compared to LI/D = 2.72 at Qs/Qt = 0.50 and 0.75. Increasing Qs/Qt from 0.25 to 0.50 for LI/D = 1.00 and 1.48 initially increased freeboard temperatures, with an accompanying increase in NOx and CO2 as well as decrease in CO values. However, further increase in Qs/Qt to 0.75 lead to lower freeboard temperatures for all primary freeboard lengths.
Air staging features widely in biomass combustion from small space heaters to industrial-scale moving grate systems. Whilst studies have been conducted into the impact of air staging on emissions and combustion performance, there is little or no insight into the exact flow dynamic and physical mechanisms that are induced by secondary air under such conditions. This paper uses experimental data to validate numerical predictions before investigating the flow field structures and mixing characteristics in a fixed bed air staged combustor. The study utilizes Constant Temperature Anemometry (CTA) experiments to establish boundary conditions for a lab-scale fixed bed combustor. Results from numerical simulations obtained using [Formula: see text] l- 𝜔 model were in good agreement with experimental data. Conditions tested cover five different secondary to total air ratios (Qs/Qt) and two different locations of secondary air injection. Results show that at Qs/Qt = 0.50, 0.25 and 0.18 one strong recirculation zone is induced upstream of the secondary air injection and one downstream. Varying the point of injection of secondary air from h/D = 0.64 to h/D = 0.40 also had an effect on the size of the upstream recirculation zone. Qs/Qt = 0.50 had the highest values of mixing index among all spatially located planes at the upstream of secondary air injection. The overall findings shed light on the possible flow interactions between secondary air and the top layers of fuel bed. They also highlight the significance of secondary air on inducing both upstream and downstream flow structures.
Energy crisis is a global issue in recent times. Meeting the energy requirements for daily cooking and heating in rural population using biomass as a fuel in traditional cookstoves (TCS) is an energy consuming and inefficient method. Moreover, the use of biomass in TCS causes serious health and environmental problems. TCS have very low efficiency and high fuel consumption. A kitchen performance test (KPT) was conducted in order to measure fuel wood consumption by TCS and improved cookstoves (ICS). Furthermore, the fuel wood consumption of the study area is also estimated. The fuel wood characteristics are determined by proximate and ultimate analysis. The KPT results show that ICS reduces fuel consumption by 0.16 kg/person/day. The ICS can also reduce 0.258 tonnes of CO 2 emissions per ICS user annually. Stove performance index shows that ICS uses 6% less fuel as compared to TCS. ICS also emits significantly less CO and PM emissions. The use of ICS would also possibly solve the environmental impacts of fuel wood collection and combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.