Mesh implantation for hernia repair is one of the common surgical techniques. The goal of this review is to highlight the basic requirements of mesh in order to select the most appropriate hernia mesh considering mesh type, physical properties and mechanical properties. Textile warp-knitted synthetic meshes have significantly decreased recurrence rate of hernia. Polypropylene light weight mesh with antimicrobial coating is taking attention of researchers due to its improved compliance, infection resistance, hydrophobicity, inert nature and strong material. Composite meshes have better tissue incorporation, reduced shrinkage and improved mechanical properties. The mesh porosity is an important factor to predict the biocompatibility of all meshes. Usually, large pore size meshes are better than small pore size meshes because of their flexibility, decreased shrinkage, reduced scar bridging and increased tissue ingrowth. All synthetic and composite meshes have higher strength than the human abdominal wall. Mesh type, mesh structure, mechanical properties and mesh implantation techniques are important factors for hernia repair. It is critical to understand the physical structure and mechanical properties of mesh material in relation to human abdominal wall. Moreover, mesh surface functionalization and grafting with plasma is a new development technique to enhance the loading of antimicrobial agent for the prevention of mesh infection.
Polypropylene (PP) large pore size nets have been most widely used implants for hernia repair. Nevertheless, the growth of bacteria within PP mesh pores after operation is a major reason of hernia recurrence. Secondly, pre-operative prophylaxis during mesh implantation has failed due to the hydrophobic nature of PP meshes. Herein, chitosan cross-linked and levofloxacin HCl incorporated, antimicrobial PP mesh devices were prepared using citric acid as a bio-based and green cross-linking agent. The inert PP mesh fibers were surface activated using O2 plasma treatment at low pressure. Then, chitosan of different molecular weights (low and medium weight) were cross-linked with O2 plasma activated surfaces using citric acid. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy confirmed that chitosan was cross-linked with O2 plasma-treated PP mesh surfaces and formed a thin layer of chitosan and levofloxacin HCl on the PP mesh surfaces. Moreover, antimicrobial properties of chitosan and levofloxacin HCl-coated PP meshes were investigated using an agar plate release method. The coated PP meshes demonstrated excellent antimicrobial inhibition zone up to 10 mm. Thus, modified PP meshes demonstrated sustained antimicrobial properties for six continuous days against Staphylococcus aureus (SA) and Escherichia coli (EC) bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.