Rice bacterial blight and rice bacterial streak are two serious rice diseases and have caused great harm to the production of rice all over the world. To develop an efficient antibacterial agent with a novel target, a series of novel 2-oxo-N-phenylacetamide derivatives containing a dissulfone moiety were synthesized, and their antibacterial activities were evaluated. Among them, compound D 14 exhibited the best antibacterial activities, especially against Xoo and Xoc with EC50 values of 0.63 and 0.79 mg/L, respectively, which were much better than the commercial control of bismerthiazol (BT) (76.59 and 83.35 mg/L, respectively) and thiodiazole copper (TC) (91.72 and 114.00 mg/L, respectively). Meanwhile, compound D 14 can interact with a CRP-like protein (Clp) of Pxo99A and show strong binding activity with Xoo-Clp with a K d value of 0.52 μM, which was far superior to the corresponding K d values of BT (183.94 μM) and TC (222.58 μM). Treatment of D 14 and deletion of the clp gene could significantly reduce the expression of the clp gene and attenuate the virulence of pathogenic bacteria. These results indicated that compound D 14 could be used as a potential novel agricultural bactericide and Clp can be used as a target protein for the control of plant bacterial diseases. This work provided reliable support for developing novel antibacterial agents based on Clp as a target protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.