In this paper, a class of linear second-order singularly perturbed differential-difference turning point problems with mixed shifts exhibiting two exponential boundary layers is considered. For the numerical treatment of these problems, first we employ a second-order Taylor's series approximation on the terms containing shift parameters and obtain a modified singularly perturbed problem which approximates the original problem. en a hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the modified problem. Further, we proved that the method is almost second-order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results. In addition, the effect of the shift parameters on the layer behavior of the solution is also examined.
In this paper, an initial value method for solving a class of linear second-order singularly perturbed differential difference equation containing mixed shifts is proposed. In doing so, first, the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay and advance parameters using Taylor series expansion. From the modified problem, two explicit initial value problems which are independent of the perturbation parameter are produced; namely, the reduced problem and the boundary layer correction problem. These problems are then solved analytically and/or numerically, and those solutions are combined to give an approximate solution to the original problem. An error estimate for this method is derived using maximum norm. Several test problems are considered to illustrate the theoretical results. It is observed that the present method approximates the exact solution very well.
This paper proposes a new fitted operator strategy for solving singularly perturbed parabolic partial differential equation with delay on the spatial variable. We decomposed the problem into three piecewise equations. The delay term in the equation is expanded by Taylor series, the time variable is discretized by implicit Euler method, and the space variable is discretized by central difference methods. After developing the fitting operator method, we accelerate the order of convergence of the time direction using Richardson extrapolation scheme and obtained
O
h
2
+
k
2
uniform order of convergence. Finally, three examples are given to illustrate the effectiveness of the method. The result shows the proposed method is more accurate than some of the methods that exist in the literature.
In this article, a singularly perturbed convection-diffusion problem with a small time lag is examined. Because of the appearance of a small perturbation parameter, a boundary layer is observed in the solution of the problem. A hybrid scheme has been constructed, which is a combination of the cubic spline method in the boundary layer region and the midpoint upwind scheme in the outer layer region on a piecewise Shishkin mesh in the spatial direction. For the discretization of the time derivative, the Crank-Nicolson method is used. Error analysis of the proposed method has been performed. We found that the proposed scheme is second-order convergent. Numerical examples are given, and the numerical results are in agreement with the theoretical results. Comparisons are made, and the results of the proposed scheme give more accurate solutions and a higher rate of convergence as compared to some previous findings available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.