LTE stands for Long Term Evolution. This technology enhances the data rate and capacity using a new radio interface and an optimized core network. This progress was done to satisfy standards defined for the fourth generation of cellular communications in ITU. LTE has two types of transmission: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). Nowadays, LTE-TDD rapidly Grows and takes place of old fixed cellular communications, like WiMAX. Another upcoming technology in the communication industry is High Amplitude Platform Stations (HAPS). Studying the capability of HAPS as a base station for LTE-TDD is the main purpose of this paper. Simulations have done using HAPS channel and compared to Stanford University Interim (SUI) standard channels for different scenarios. Results were compared to achieve a conclusion on HAPS implementation for LTE-TDD based on BER and data throughput.
The ever-expanding growth of the electronics and communications industries present new challenges for researchers. One of these challenges is the generation of the required bandwidth signal over a specific time frame that is used in a variety of contexts, particularly radar systems. To improve the range resolution in the radar along with better SNR, it is necessary to reduce the signal bandwidth and increase the peak power. There are some restrictions for narrowband signals like power limitation, pulse shaping, and the production of unwanted harmonics. So as a solution pulse compression techniques are suggested. Pulse compression is a process that modulating the transmitted pulse to achieve a wideband signal and then at the receiver, the received signal correlates with the transmitted pulse to achieve narrowband representations of data. Chirp is the most common signal used in pulse compression. The chirp signal is produced using linear frequency modulation. In this study, we attempted to add an amplitude modulation to the chirp signal and evaluate its performance by implementation on FPGA. The outcome signal is called chirplet and simulation will show that it enhance target detection and image quality in imaging radars like SAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.