This study deals with the cytotoxicity of helenanolide-type (10 alpha-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11 alpha, 13-dihydrohelenalin esters (9-12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13-21) with 2 alpha-hydroxy-4-oxo- and 2 alpha,4 alpha-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.
Resistance to cisplatin (cDDP) is a major limitation to its clinical effectiveness. Review of literature data indicates that cDDP resistance is a multifactorial phenomenon. This provides an explanation why attempts to reverse or circumvent resistance using cDDP-analogues or combination therapy with modulators of specific resistance mechanisms have had limited success so far. It therefore provides a rationale to use hyperthermia, an agent with pleiotropic effects on cells, in trying to modulate cDDP resistance. In this review the effects of hyperthermia on cDDP cytotoxicity and resistance as well as underlying mechanisms are discussed. Hyperthermia is found to be a powerful modulator of cDDP cytotoxicity, both in sensitive and resistant cells. Relatively high heat doses (60 min 43 degrees C) seem to specifically interfere with cDDP resistance. The mechanism of interaction has not been fully elucidated so far, but seems to consist of multiple (simultaneous) effects on drug accumulation, adduct-formation and -repair. This may explain why hyperthermia seems to be so effective in increasing cDDP cytotoxicity, irrespective of the presence of resistance mechanisms. Therefore, the combination of hyperthermia and cDDP deserves further attention.
The cytotoxicity of 21 flavonoids and 5 sesquiterpene lactones, as present in Arnica species, was studied in GLC4, a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. Following continuous incubation, most flavonoids showed moderate to low cytotoxicity, as compared with the reference compound cisplatin (IC50 = 1.1 microM against GLC4 and 2.9 microM against COLO 320). Their IC50 values varied from 17 to > 200 microM. The most toxic compound was the flavone jaceosidin. Of the sesquiterpene lactones tested, helenalin, possessing both the reactive alpha-methylene-gamma-lactone moiety and a reactive alpha,beta-unsubstituted cyclopentenone ring, displayed the strongest cytotoxicity. For 2 h exposure, its IC50 value was 0.44 microM against GLC4 and 1.0 microM against COLO 320. COLO 320 was more sensitive than GLC4 for many flavonoids (especially for flavones), but more resistant to the cytotoxic effect of the sesquiterpene lactones bearing an exocylic methylene group fused to the lactone function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.