Summary Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and likely play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world’s largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For OCTUs reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic datasets.
Abstract. Population disjunctions, as a first step toward complete allopatry, present an interesting situation to study incipient speciation. The geological formation of the Baja California Peninsula currently divides 19 species of fish into disjunct populations that are found on its Pacific Coast and in the northern part of the Gulf of California (also called the Sea of Cortez), but are absent from the Cape (Cabo San Lucas) region. We studied the genetic makeup of disjunct populations for 12 of these 19 fish species. Phylogeographic patterns for the 12 species can be separated into two major classes: a first group (eight species) showed reciprocal monophyly and high genetic divergence between disjunct populations. A second group (four species) displayed what appeared to be panmictic populations. Population structure between Pacific Coast populations, across the Punta Eugenia biogeographic boundary, was also evaluated. While dispersal potential (inferred by pelagic larval duration) was a poor predictor of population structure between Gulf of California and Pacific populations, we found that population genetic subdivision along the Pacific Coast at Punta Eugenia was always positively correlated with differentiation between Pacific and Gulf of California populations. Vicariant events, ongoing gene flow, and ecological characteristics played essential roles in shaping the population structures observed in this study.
Molecular surveys of meiofaunal diversity face some interesting methodological challenges when it comes to interstitial nematodes from soils and sediments. Morphology-based surveys are greatly limited in processing speed, while barcoding approaches for nematodes are hampered by difficulties of matching sequence data with traditional taxonomy. Intermediate technology is needed to bridge the gap between both approaches. An example of such technology is video capture and editing microscopy, which consists of the recording of taxonomically informative multifocal series of microscopy images as digital video clips. The integration of multifocal imaging with sequence analysis of the D2D3 region of large subunit (LSU) rDNA is illustrated here in the context of a combined morphological and barcode sequencing survey of marine nematodes from Baja California and California. The resulting video clips and sequence data are made available online in the database NemATOL (http://nematol.unh.edu/ ). Analyses of 37 barcoded nematodes suggest that these represent at least 32 species, none of which matches available D2D3 sequences in public databases. The recorded multifocal vouchers allowed us to identify most specimens to genus, and will be used to match specimens with subsequent species identifications and descriptions of preserved specimens. Like molecular barcodes, multifocal voucher archives are part of a wider effort at structuring and changing the process of biodiversity discovery. We argue that data-rich surveys and phylogenetic tools for analysis of barcode sequences are an essential component of the exploration of phyla with a high fraction of undiscovered species. Our methods are also directly applicable to other meiofauna such as for example gastrotrichs and tardigrades.
Molecular and biochemical genetic analyses have revealed that many marine invertebrate taxa, including some well-studied and presumably cosmopolitan species, are actually complexes of sibling species. When morphological differences are slight and estimated divergence times are old, data suggest either unusually high rates of sequence evolution or long-term morphological stasis. Here, five gene regions (mitochondrial cytochrome oxidase subunit I and large-subunit ribosomal 16S rDNA and nuclear ITS1, 5.8S rDNA, and ITS2) were analyzed in four geographic samples of the meiobenthic harpacticoid copepod Cletocamptus deitersi. Molecular sequences revealed four extremely differentiated molecular lineages with unalignable nuclear intergenic spacers and mitochondrial uncorrected divergences reaching 25% (cytochrome oxidase) and 36% (16S rDNA). These levels of divergence are greater than those reported previously for congeneric species in diverse invertebrate taxa, including crustaceans. The nominally intraspecific divergence matches or exceeds the corresponding divergence from a known congener (Cletocamptus helobius). A molecular clock applied to the cytochrome oxidase subunit I data suggests that these lineages split in the Miocene, consistent with the fossil record of a North American Cletocamptus from the same period. Morphological differences among the major lineages are subtle but congruent with the patterns of genetic differentiation. Our conclusion, based on concordant patterns of variation in two mitochondrial and three nuclear gene regions, as well as morphological observations, is that C. deitersi in North America is composed of at least four separate species by the genealogical concordance, phylogenetic, and morphological-species criteria. Alternative explanations for the deep phylogenetic nodes and apparent morphological stasis, including high rates of sequence evolution, balancing selection, and genetic signatures of historical events, are considered unlikely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.