Sexual reproduction generally requires no more than two partners. Here, we show convergent evolution of social hybridogenesis, a reproductive system requiring three reproductive partners in harvester ants. In this unorthodox reproductive system, two distinct genetic lineages live in sympatry and queens have to mate with males of their own lineage to produce queens along with males of the alternative lineage to produce workers. Using a large transcriptomic data set of nine species, we show that social hybridogenesis evolved at least three times independently in the genus Messor. Moreover, a study of 13 populations of Messor barbarus revealed that this mode of reproduction is fixed in the whole range of this ecologically dominant species. Finally, we show that workers can produce males carrying genes of the two genetic lineages, raising the possibility of rare gene flow between lineages contributing to the long-term maintenance of pairs of interdependent lineages. These results emphasize the evolutionary importance of social hybridogenesis, a major transition possibly linked to the peculiar ecology of harvester ants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.