Post-transcriptional gene silencing mediated by microRNAs (miRNAs) modulates numerous developmental and stress response pathways. For the last two decades, HASTY (HST), the ortholog of human EX-PORTIN 5, was considered to be a candidate protein that exports plant miRNAs from the nucleus to the cytoplasm. Here, we report that HST functions in the miRNA pathway independent of its cargo-exporting activity in Arabidopsis. We found that Arabidopsis mutants with impaired HST shuttling exhibit normal subcellular distribution of miRNAs. Interestingly, protein-protein interaction and microscopy assays showed that HST directly interacts with the microprocessor core component DCL1 through its N-terminal domain. Moreover, mass spectrometry analysis revealed that HST also interacts independently of its N-terminal domain with the mediator complex subunit MED37. Further experiments revealed that HST could act as a scaffold to facilitate the recruitment of DCL1 to genomic MIRNA loci by stabilizing the DCL1-MED37 complex, which in turn promotes the transcription and proper processing of primary miRNA transcripts (pri-miRNAs). Taken together, these results suggest that HST is likely associated with the formation of the miRNA biogenesis complex at MIRNA genes, promoting the transcription and processing of pri-miRNAs rather than the direct export of processed miRNAs from the nucleus.
Light is the most influential environmental stimulus for plant growth. In response to deficient light, plants reprogram their development to adjust their growth in search for a light source. A fine reprogramming of gene expression orchestrates this adaptive trait. Here we show that plants alter microRNA (miRNA) biogenesis in response to light transition. When plants suffer an unusual extended period of light deprivation, the miRNA biogenesis factor HYPONASTIC LEAVES 1 (HYL1) is degraded but an inactive pool of phosphorylated protein remains stable inside the nucleus. Degradation of HYL1 leads to the release of gene silencing, triggering a proper response to dark and shade. Upon light restoration, a quick dephosphorylation of HYL1 leads to the reactivation of miRNA biogenesis and a switch toward a developmental program that maximizes the light uptake. Our findings define a unique and fast regulatory mechanism controlling the plant silencing machinery during plant light response.
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked twelve groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long noncoding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.