In the serial production of components for automotive applications such as cooling and air-conditioning systems, aluminum die-cast materials are frequently used due to their excellent castability. The aim of providing light weight components can be approached with thin walled cross sections even for complex structural parts. However, cast components are usually connected to semifinished products such as profiles or tubes. The connections have to be mostly pressure tight. The joining technique for these applications has to be highly productive to obtain high component outcome and cost-efficient. Laser beam welding techniques are especially suitable for these tasks. Die-cast components have limited or no weldability due to their manufacturing process. This is due to entrapped gases within pores or cavities under high pressure conditions. Furthermore, the mold release agents for the die-cast process are inappropriate for obtaining homogeneous and sound weld seams. Consequently, this results in a larger number of pores in the weld seam and stochastic melt pool blow-outs, which prohibit mostly the use of the component. To solve these issues, a new welding technique, remoweld®T, has been developed at Fraunhofer IWS. This unique method has been extensively tested and used for serial-production. The decisive step was to use laser sources with brilliant beam quality in combination with a high frequency beam oscillation within the melt pool. In this paper, the technological approach will be presented. With the remoweld®T method, it was possible to obtain homogeneous weld seams with low porosity and a strongly reduced distortion for the first time. Minor component tolerances and a reproducible joining technique with a high output for serial production can be achieved
Mischbauweisen werden im Karosseriebau immer wichtiger. Dafür wurden neuartige Fügetechnologien für metallische Mischverbindungen entwickelt. Diese ermöglichen das Herstellen nahezu beliebiger Stoßgeometrien durch ein angepasstes Zwischenfügeelement, den Transition Joint. Mittels Laserfügetechnologien können sowohl hohe Festigkeit als auch gute Verformbarkeit der Verbindungen sichergestellt werden. Dadurch eröffnen sich neue Anwendungsfelder, besonders in Leichtbaukonstruktionen, die im weiteren Fertigungsprozess umgeformt oder bei Crashbelastung stark deformiert werden. Das entwickelte Konzept von laserstrahlgeschweißten Stahl-Aluminium-Mischverbindungen unter Verwendung von laserinduktionswalzplattierten Transition Joints besitzt enormes Potenzial bezüglich einer Umsetzung in Karosserie-Leichtbaustrukturen. Einerseits ermöglicht dieser Ansatz erstmalig die Realisierung ebener, belastbarer und umformbarer Stahl-Aluminium Tailored Blanks. Andererseits sind auch Leichtbau-Profilbauteile in Mischbauweise auf diese Weise vorteilhaft herstellbar. Schließlich können auch im Zusammenbau, unter Verwendung von beigelegten Transition Joint Bändern, Mischbaugruppendurch Widerstandspunktschweißen auf einfache Art gefertigt werden. Bei der Auslegung der Transition Joints sind dabei die geometrischen (Wandstärke, Stoßart) und werkstofftechnischen (Festigkeit, Duktilität) Randbedingungen der zu fügenden Bauteile sowie die maßgebende Belastungssituation zu berücksichtigen. Neben den mechanischen Kennwerten der Mischverbindung steht natürlich häufig auch das Korrosionsverhalten im Mittelpunkt. Diesbezügliche Untersuchungen und entsprechende Entwicklung zu angepassten Korrosionsschutzkonzepten laufen derzeit. Das Prinzip der metallischen Mischverbindungen auf der Basis von Transition Joint stellt eine zukunftsträchtige Variante in der Reihe der thermischen Fügeverfahren dar, dessen Anwendung einen belastungsgerechten Werkstoffeinsatz ermöglicht und zur Gewichtsreduzierung im Fahrzeugbau beiträgt
Continuously rising demands of legislators require a significant reduction of CO 2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using "Tailored blanks" or "Patchwork structures" meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengtheningpatterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.