In this paper we construct constant dimension space codes with prescribed minimum distance. There is an increased interest in space codes since a paper [13] by Kötter and Kschischang were they gave an application in network coding. There is also a connection to the theory of designs over finite fields. We will modify a method of Braun, Kerber and Laue [7] which they used for the construction of designs over finite fields to do the construction of space codes. Using this approach we found many new constant dimension spaces codes with a larger number of codewords than previously known codes. We will finally give a table of the best found constant dimension space codes. network coding, q-analogue of Steiner systems, subspace codes
We construct new (n, r)-arcs in P G(2, q) by prescribing a group of automorphisms and solving the resulting Diophantine linear system with lattice point enumeration. We can improve the known lower bounds for q = 11, 13, 16, 17, 19 and give the first example of a double blocking set of size n in P G(2, p) with n < 3p and p prime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.