Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.
Crystal growth of MnBi 2 Te 4 has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi 2 Te 4 can be scaled-up and strengthen it as a promising experimental platform for studies of a crossover between magnetic ordering and non-trivial topology. High-quality single crystals of MnBi 2 Te 4 are grown by slow cooling within a narrow range between the melting points of Bi 2 Te 3 (586 °C) and MnBi 2 Te 4 (600 °C). Single crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies. Powders of MnBi 2 Te 4 can be obtained at subsolidus temperatures, and a complementary thermochemical study establishes a limited high-temperature range of phase stability. Nevertheless, quenched powders are stable at room temperature and exhibit long-range antiferromagnetic ordering below 24 K. The expected Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption and linear dichroism data. MnBi 2 Te 4 exhibits a metallic type of resistivity in the range 4.5-300 K. The compound is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments provide evidence for a surface state forming a gapped Dirac cone.
We present a rst-principles density functional study of the structural, electronic and magnetic properties of the ferroelectric domain walls in multiferroic BiFeO3. We nd that domain walls in which the rotations of the oxygen octahedra do not change their phase when the polarization reorients are the most favorable, and of these the 109 • domain wall centered around the BiO plane has the lowest energy. The 109 • and 180 • walls have a signicant change in the component of their polarization perpendicular to the wall; the corresponding step in the electrostatic potential is consistent with a recent report of electrical conductivity at the domain walls. Finally, we show that changes in the Fe-O-Fe bond angles at the domain walls cause changes in the canting of the Fe magnetic moments which can enhance the local magnetization at the domain walls.
The three‐dimensional structure of Ag ion‐exchanged zeolite A was studied by XRD and scanning transmission electron microscopy. Despite the difficulties in the microscopic investigation of zeolites with high Al content, the arrangement of isolated Ag ions and Ag clusters of six atoms was visualized (see picture).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.