Lymphangiogenesis results in the formation of a vascular network distinct from arteries and veins that serves to drain interstitial fluid from surrounding tissues and plays a pivotal role in the immune defense of vertebrates as well as in the progression of cancer and other diseases . In mammals, lymph vessels are lined by endothelial cells possibly sprouting from embryonic veins, and their development appears to be critically dependent on the function of PROX1 and VEGFC signaling . The existence of a lymphatic system in teleosts has been a matter of debate for decades. Here we show on the morphological, molecular, and functional levels that zebrafish embryos develop a lymphatic vasculature that serves to retrieve components of the interstitium to the lymph system. We demonstrate the existence of vessels that are molecularly and functionally distinct from blood vessels and show that the development of these vessels depends on Vegfc and VEGFR-3/Flt4 signaling. These findings imply that the molecular components controlling lymphangiogenesis in zebrafish and mammals are conserved and that the zebrafish lymphatic system develops early enough to allow in vivo observations, lineage tracing, and genetic as well as pharmacological screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.