Polyketide synthases (PKS) perform a stepwise biosynthesis of diverse carbon skeletons from simple activated carboxylic acid units. The products of the complex pathways possess a wide range of pharmaceutical properties, including antibiotic, antitumor, antifungal, and immunosuppressive activities. We have performed a comprehensive phylogenetic analysis of multimodular and iterative PKS of bacteria and fungi and of the distinct types of fatty acid synthases (FAS) from different groups of organisms based on the highly conserved ketoacyl synthase (KS) domains. Apart from enzymes that meet the classification standards we have included enzymes involved in the biosynthesis of mycolic acids, polyunsaturated fatty acids (PUFA), and glycolipids in bacteria. This study has revealed that PKS and FAS have passed through a long joint evolution process, in which modular PKS have a central position. They appear to have derived from bacterial FAS and primary iterative PKS and, in addition, share a common ancestor with animal FAS and secondary iterative PKS. Furthermore, we have carried out a phylogenomic analysis of all modular PKS that are encoded by the complete eubacterial genomes currently available in the database. The phylogenetic distribution of acyltransferase and KS domain sequences revealed that multiple gene duplications, gene losses, as well as horizontal gene transfer (HGT) have contributed to the evolution of PKS I in bacteria. The impact of these factors seems to vary considerably between the bacterial groups. Whereas in actinobacteria and cyanobacteria the majority of PKS I genes may have evolved from a common ancestor, several lines of evidence indicate that HGT has strongly contributed to the evolution of PKS I in proteobacteria. Discovery of new evolutionary links between PKS and FAS and between the different PKS pathways in bacteria may help us in understanding the selective advantage that has led to the evolution of multiple secondary metabolite biosyntheses within individual bacteria.
Myxobacteria are well known for their biosynthetic potential, especially for the production of cytotoxic compounds with potential anticancer activities. The tubulysins are currently in preclinical development. They are produced in very low quantities, and genetic manipulation of producing strains has never been accomplished. We report the development of a mariner-based transposon mutagenesis system for Angiococcus disciformis An d48. Extracts from a library of 1200 mutants were analyzed for the presence of tubulysin by a microscopic cell nucleus fragmentation bioassay. The transposition sites of four tubulysin-negative mutants were identified by vector recovery, which led to the identification and the sequencing of the corresponding core biosynthetic gene locus. Sequence analysis of more than 80,000 bp reveals an unusual multimodular hybrid polyketide synthase/peptide synthetase assembly line with a variety of unprecedented features.
The DKxanthenes are a family of yellow pigments which play a critical role in myxobacterial development. Thirteen unique structures from Myxococcus xanthus DK1622 differ in the length of their characteristic polyene functionality, as well as the extent of methyl branching. We aimed to understand the mechanistic basis for this "molecular promiscuity" by analyzing the gene cluster in DK1622, and comparing it to the DKxanthene biosynthetic locus in a second myxobacterium, Stigmatella aurantiaca DW4/3-1, which produces a more limited range of compounds. While the core biosynthetic machinery is highly conserved, M. xanthus contains a putative asparagine hydroxylase function which is not present in S. aurantiaca. This observation accounts, in part, for the significantly larger metabolite family in M. xanthus. Detailed analysis of the encoded hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line provides direct evidence for the mechanism underlying the variable polyene length and the observed pattern of methyl functionalities.
The aurachins are a family of secondary metabolites, with the main members aurachin A, B, C, and D, produced by the myxobacterium Stigmatella aurantiaca Sg a15. These isoprenoid quinoline alkaloids are classified as A-type or C-type aurachins according to the position of the farnesyl residue either at C4 or C3 of the quinoline core, respectively. Previous feeding studies revealed that the C-type aurachins are converted to A-type aurachins by late stage tailoring reactions. While the core gene cluster coding for the functionalities required for the biosynthesis of the basic structure aurachin D is known, neither of the genes encoding for the successively acting tailoring enzymes was known up to date, which was assumed to be due to a split cluster organisation. Here we describe the identification of a total of five genes, located upstream of the aurachin core cluster and at additional two loci elsewhere in the genome, encoding for the aforementioned functionalities. The generation and evaluation of respective inactivation mutants of S. aurantiaca Sg a15 allowed for the first time to propose an exhaustive model for aurachin biosynthesis. One of the deduced biosynthetic transformations corresponds to a pinacol rearrangement, an unprecedented tailoring reaction in secondary metabolite biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.