Albumin is the most abundant plasma protein. Critical illness is often associated with altered, predominately decreased, serum albumin levels. This hypoalbuminaemia is usually corrected by administration of exogenous albumin. This study aimed to track the concentration-dependent influence of albumin on blood coagulation in vitro. Whole blood (WB) samples from 25 volunteers were prepared to contain low (19.3 ± 7.7 g/L), physiological (45.2 ± 7.8 g/L), and high (67.5 ± 18.1 g/L) levels of albumin. Haemostatic profiling was performed using a platelet function analyzer (PFA) 200, impedance aggregometry, a Cone and Platelet analyzer (CPA), calibrated automated thrombogram, and thrombelastometry (TEM). Platelet aggregation-associated ATP release was assessed via HPLC analysis. In the low albumin group, when compared to the physiological albumin group, we found: i) shortened PFA 200-derived closure times indicating increased primary haemostasis; ii) increased impedance aggregometry-derived amplitudes, slopes, ATP release, as well as CPA-derived average size indicating improved platelet aggregation; iii) increased TEM-derived maximum clot firmness and alpha angles indicating enhanced clot formation. TEM measurements indicated impaired clot formation in the high albumin group compared with the physiological albumin group. Thus, albumin exerted significant anticoagulant action. Therefore, low albumin levels, often present in cancer or critically ill patients, might contribute to the frequently occurring venous thromboembolism.
BackgroundThe number of implanted ventricular assist devices (VADs) has increased significantly recently. Bleeding, the most frequent complication, cannot be solely attributed to anticoagulation therapy. Acquired von Willebrand syndrome (AVWS) caused by increased shear stress is frequent in VAD patients and can increase the bleeding risk. The HeartMate III (HM III) is a novel left VAD featuring potential improvements over the HeartMate II.Methods and ResultsIn this study, we investigated the prevalence and onset of AVWS in 198 VAD patients. To our knowledge, this is the largest cohort of VAD patients whose longitudinal data on AVWS have been collected. We also analyzed whether AVWS is less severe in HM III patients than in HeartMate II patients. Because platelet dysfunction can raise the bleeding risk, we investigated platelet function in a subset of patients. In total, 198 VAD patients and 60 patients with heart transplants as controls were included in this study. The ratio of von Willebrand factor collagen binding capacity to von Willebrand factor:antigen, multimer analyses, and platelet function (especially secretion of α‐ and δ‐granules) were investigated. All 198 VAD patients developed AVWS. As soon as the VAD was explanted, the AVWS disappeared within hours. AVWS was less severe in the HM III patients than in the HeartMate II patients. The HM III patients had fewer bleeding symptoms. In addition, VAD patients exhibited a platelet α‐ and δ‐granule secretion defect.Conclusions AVWS develops in VAD patients and may increase the bleeding risk. The HM III device causes less severe AVWS. Platelet secretion defects should be investigated in VAD patients because they also raise the bleeding risk.Clinical Trial Registration https://www.drks.de/drks_web. Unique identifier: DRKS00000649.
Orthostatic stress activates the coagulation system. The extent of coagulation activation with full orthostatic load leading to presyncope is unknown. We examined in 7 healthy males whether presyncope, using a combination of head up tilt (HUT) and lower body negative pressure (LBNP), leads to coagulation changes as well as in the return to baseline during recovery. Coagulation responses (whole blood thrombelastometry, whole blood platelet aggregation, endogenous thrombin potential, markers of endothelial activation and thrombin generation), blood cell counts and plasma mass density (for volume changes) were measured before, during, and 20 min after the orthostatic stress. Maximum orthostatic load led to a 25% plasma volume loss. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential, and tissue factor pathway inhibitor levels increased during the protocol, commensurable with hemoconcentration. The markers of endothelial activation (tissue factor, tissue plasminogen activator), and thrombin generation (F1+2, prothrombin fragments 1 and 2, and TAT, thrombin-antithrombin complex) increased to an extent far beyond the hemoconcentration effect. During recovery, the markers of endothelial activation returned to initial supine values, but F1+2 and TAT remained elevated, suggestive of increased coagulability. Our findings of increased coagulability at 20 min of recovery from presyncope may have greater clinical significance than short-term procoagulant changes observed during standing. While our experiments were conducted in healthy subjects, the observed hypercoagulability during graded orthostatic challenge, at presyncope and in recovery may be an important risk factor particularly for patients already at high risk for thromboembolic events (e.g. those with coronary heart disease, atherosclerosis or hypertensives).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.