Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.
Maize (Zea mays L.) represents the main caloric source for much of the world’s population. Pigmented maize varieties are an excellent source of nutraceutical compounds: blue and yellow maize are rich in anthocyanins as well as carotenoids and phenolic acids, respectively. However, blue maize is usually grown in small quantities as a specialty crop because it lacks the qualities and adaptations of commercial white and yellow varieties. Here, a new high-yield variety of blue maize called Vitamaiz was developed from inbred lines of subtropical blue, white, and yellow maize. The aim of this study was to characterize the nutraceutical and physical properties of 30 Vitamaiz hybrids in two subtropical locations. Kernel physical traits, nutrient composition, and nutraceutical components (free phenolic acids, FPA; cell wall-bound phenolic acids, BPA; total monomeric anthocyanin content, TAC; antioxidant capacity, AOX by oxygen radical absorbance capacity assay, and total carotenoid content, TCC) were evaluated. The biophysical traits of the hybrids were suitable for nixtamalized and flour maize industries. High levels of FPA (228 mg GAE/100 g), BPA (635 mg GAE/100 g), and AOX (2.0 and 8.1 mM Trolox equivalent/100 g for FPA and BPA, respectively) were also detected with elevated TAC levels (274 mg C3G/kg dw) and AOX activity (3.1 mM Trolox equivalent/100 g). This is the first study to characterize Blue × Yellow maize hybrids that adapt to subtropical environments.
Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signaling pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella patens. To investigate P. patens response to high glucose treatment, we explored the dynamic changes in metabolism and protein population by applying a metabolomic fingerprint analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination and label-free untargeted proteomics. Glucose feeding causes specific changes in P. patens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is clearly different from those of osmotically induced responses. The maximal rate of PSII was not affected although chlorophyll decreased in both treatments. The biological process, cellular component, and molecular function gene ontology (GO) classifications of the differentially expressed proteins indicate the translation process is the most represented category in response to glucose, followed by photosynthesis, cellular response to oxidative stress and protein refolding. Importantly, although several proteins have high fold changes, these proteins have no predicted identity. The most significant discovery of our study at the proteome level is that high glucose increase abundance of proteins related to the translation process, which was not previously evidenced in non-vascular plants, indicating that regulation by glucose at the translational level is a partially conserved response in both plant lineages. To our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are performed after a high sugar treatment in non-vascular plants. These findings unravel evolutionarily shared and differential responses between vascular and non-vascular plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.