Neuromorphic photonics that aims to process and store information simultaneously like human brains has emerged as a promising alternative for the next generation intelligent computing systems. The implementation of hardware emulating the basic functionality of neurons and synapses is the fundamental work in this field. However, previously proposed optical neurons implemented with SOA-MZIs, modulators, lasers or phase change materials are all dependent on active devices and quite difficult for integration. Meanwhile, although the nonlinearity in nanocavities has long been of interest, the previous theories are intended for specific situations, e.g., selfpulsation in microrings, and there is still a lack of systematic studies in the excitability behavior of the nanocavities including the silicon photonic crystal cavities. Here, we report for the first time a universal coupled mode theory model for all side-coupled passive microresonators. Attributed to the nonlinear excitability, the passive microresonator can function as a new type of all-optical spiking neuron. We demonstrate the microresonator-based neuron can exhibit the three most important characteristics of spiking neurons: excitability threshold, refractory period and cascadability behavior, paving the way to realize all-optical spiking neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.