The secondary structure and global fold of the AVR9 elicitor protein of Cladosporium fulvum has been determined by 2D NMR and distance-geometry protocols. The protein consists of three anti-parallel strands forming a rigid region of P-sheet. On the basis of the NMR-derived parameters and distance geometry calculations, it is evident that the AVR9 protein is structurally very homologuous to carboxy peptidase inhibitor (CPI) of which the X-ray structure is known. The AVR9 protein reveals the presence of a cystine knot, which consists of a ring formed by two disulfide bridges and the interconnecting backbone through which the third disulfide bridge penetrates. This structural motif is found in several small proteins such as proteinase inhibitors, ion channel blockers and growth factors. The implications of the structural relationship between AVR9 and other biologically active proteins are discussed.
Findings suggest that traffic law reforms in order to have an effect on both traffic fatality and injury rates reduction require changes in police enforcement practices. Last, this case also illustrates how the diffusion of successful road safety practices globally promoted by WHO and World Bank can be an important influence for enhancing national road safety practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.