The bar and pat genes, isolated from different Streptomyces species, both encode a phosphinothricin acetyltransferase (PAT) and are widely applied in plant genetic engineering. The genes were expressed in Escherichia coli and the corresponding proteins were purified and used for functional and structural comparison. Both proteins are homodimers regardless of whether they are expressed in microorganisms or in plants. They have comparable molecular weights and show immuno-cross-reactivity to their respective polyclonal antisera. The enzymes have a similar substrate affinity towards L-phosphinothricin and do not acetylate any of the other L-amino acids tested. In model digestion experiments using simulated human gastric fluids, their enzymatic activity is decreased within seconds, accompanied by a rapid and complete breakdown of both proteins. These data demonstrate the structural and functional equivalence of the PAT proteins, which is also reflected in the comparable performance of transgenic plants carrying the bar or pat gene.
An initially nonclonable DNA locus close to a gene of L-lysine biosynthesis in Corynebacterium glutamicum was analyzed in detail. Its stepwise cloning and its functional identification by monitoring the amino acid uptakes of defined mutants, together with mechanistic studies, identified the corresponding structure as aroP, the general aromatic amino acid uptake system.
In eubacteria, there are three slightly different pathways for the synthesis of m-diaminopimelate (m-DAP), which is one of the key linking units of peptidoglycan. Surprisingly, for unknown reasons, some bacteria use two of these pathways together. An example isCorynebacterium glutamicum, which uses both the succinylase and dehydrogenase pathways for m-DAP synthesis. In this study, we clonedapD and prove by enzyme experiments that this gene encodes the succinylase (M
r = 24082), initiating the succinylase pathway of m-DAP synthesis. By using gene-directed mutation, dapD, as well as dapE encoding the desuccinylase, was inactivated, thereby forcing C. glutamicum to use only the dehydrogenase pathway of m-DAP synthesis. The mutants are unable to grow on organic nitrogen sources. When supplied with low ammonium concentrations but excess carbon, their morphology is radically altered and they are less resistant to mechanical stress than the wild type. Since the succinylase has a high affinity toward its substrate and uses glutamate as the nitrogen donor, while the dehydrogenase has a low affinity and incorporates ammonium directly, the m-DAP synthesis is another example of twin activities present in bacteria for access to important metabolites such as the well-known twin activities for the synthesis of glutamate or for the uptake of potassium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.