Different representative of algae and cyanobacteria were isolated from a freshwater habitat and cultivated in laboratory to compare their photoacclimation capacity when exposed to a wide range of light intensity and to understand if this factor may modify natural community dominance. All species successfully acclimated to all light intensities and the response of phytoplankton to increased light intensity was similar and included a decrease of most photosynthetic pigments accompanied by an increase in photoprotective pigment content relative to Chl a. Most species also decreased their light absorption efficiency on a biovolume basis. This decrease not only resulted in a lower fraction of energy absorbed by the cell, but also to a lower transfer of energy to PSII and PSI. Furthermore, energy funnelled to PSII or PSI was also rearranged in favour of PSII. High light acclimated organisms also corresponded to high non-photochemical quenching and photosynthetic electron transport reduction state and to a low Φ'M. Thus photoacclimation processes work toward reducing the excitation pressure in high light environment through a reduction of light absorption efficiency, but also by lowering conversion efficiency. Interestingly, all species of our study followed that tendency despite being of different functional groups (colonial, flagellated, different sizes) and of different phylogeny demonstrating the great plasticity and adaptation ability of freshwater phytoplankton to their light environment. These adjustments may explain the decoupling between growth rate and photosynthesis observed above photosynthesis light saturation point for all species. Even if some species did reach higher growth rate in our conditions and thus, should dominate in natural environment with respect to light intensity, we cannot exclude that other environmental factors also influence the population dynamic and make the outcome harder to predict.
Urinary biomarkers of exposure are used widely in biomonitoring studies. The commonly used urinary biomarkers for the aromatic solvents toluene (T), ethylbenzene (E), and m-xylene (X) are o-cresol, mandelic acid, and m-methylhippuric acid. The toxicokinetics of these biomarkers following inhalation exposure have yet to be described by physiologically based pharmacokinetic (PBPK) modeling. Five male volunteers were exposed for 6 h in an inhalation chamber to 1/8 or 1/4 of the time-weighted average exposure value (TWAEV) for each solvent: toluene, ethylbenzene, and m-xylene were quantified in blood and exhaled air and their corresponding urine biomarkers were measured in urine. Published PBPK model for parent compounds was used and simulations were compared with experimental blood and exhaled air concentration data. If discrepancies existed, Vmax and Km were optimized. Urinary excretion was modeled using parameters found in literature assuming simply stoichiometric yields from parent compound metabolism and first-order urinary excretion rate. Alternative models were also tested for (1) the possibility that CYP1A2 is the only enzyme implicated in o-cresol and (2) a 2-step model for describing serial metabolic steps for mandelic acid. Models adapted in this study for urinary excretion will be further used to interpret urinary biomarker kinetic data from mixed exposures of these solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.