Polarized hyperspectral images can reflect the rich physicochemical characteristics of targets. Meanwhile, the contained plentiful information also brings great challenges to signal processing. Although compressive sensing theory provides a good idea for image processing, the simplified compression imaging system has difficulty in reconstructing full polarization information. Focused on this problem, we propose a two-step reconstruction method to handle polarization characteristics of different scales progressively. This paper uses a quarter-wave plate and a liquid crystal tunable filter to achieve full polarization compression and hyperspectral imaging. According to their numerical features, the Stokes parameters and their modulation coefficients are simultaneously scaled. The first Stokes parameter is reconstructed in the first step based on compressive sensing. Then, the last three Stokes parameters with similar order of magnitude are reconstructed in the second step based on previous results. The simulation results show that the two-step reconstruction method improves the reconstruction accuracy by 7.6 dB for the parameters that failed to be reconstructed by the non-optimized method, and reduces the reconstruction time by 8.25 h without losing the high accuracy obtained by the current optimization method. This feature scaling method provides a reference for the fast and high-quality reconstruction of physical quantities with obvious numerical differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.